Skip to main content
Log in

Effect of carbon monoxide partial pressure on the high-temperature decomposition of Nicalon fibre

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The high-temperature equilibrium partial pressures of the predominant gaseous species over Nicalon were determined thermochemically. It was calculated that the most prevalent gaseous species in equilibrium with Nicalon at 1300 °C is carbon monoxide. Subsequently, fibres of Nicalon (NLM 202) were heat treated at 1300 °C in various partial pressures of carbon monoxide gas and analysed via single filament strength testing, scanning electron microscopy, X-ray diffraction, and scanning Auger microscopy. The heat treatments in carbon monoxide had a significant effect on the strength retention and composition of the fibres (∼75% retained) compared to the treatments in argon where only 25% of the initial strength was retained. The Auger analysis revealed that the treatment in argon evolved carbon and oxygen from the fibre while in carbon monoxide atmospheres a carbon layer was deposited on the fibre surface. X-ray diffraction showed that grain growth had not occurred in any of the heat treatments. This study shows the important role of thermochemical reactions in the strength degradation of Nicalon, and its possible relationship to the formation of carbon surface/interface layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Prewo and J. J. Brennan, J. Mater. Sci. 15 (1980) 463.

    Article  CAS  Google Scholar 

  2. R. F. Cooper and K. Chyung, ibid. 22 (1987) 3148.

    Article  CAS  Google Scholar 

  3. S. Yajima, K. Okamura, T. Katsuzana, Y. Hasegana and T. Shishido, Nature 279 (1979) 706.

    Article  CAS  Google Scholar 

  4. L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.

    Article  CAS  Google Scholar 

  5. C. Laffon, A. M. Flank, P. Lagarde, M. Laridjan, R. Nagege, P. Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel and A. P. Legrand, ibid. 24 (1989) 1503.

    Article  CAS  Google Scholar 

  6. Y. Sasaki, Y. Nishina, M. Sato and K. Okamura, ibid. 22 (1987) 443.

    Article  CAS  Google Scholar 

  7. B. Catoire, M. Sotton, G. Simon and A. R. Bunsell, Polymer 28 (1987) 751.

    Article  CAS  Google Scholar 

  8. T. S. Clark, M. Jaffe, J. Rabe and N. Langley, Ceram. Engng. Sci. Proc. 7 (1988) 901.

    Article  Google Scholar 

  9. T. S. Clark, R. M. Arons, J. B. Stamatoff and J. Rabe, ibid. 6 (1985) 576.

    Article  CAS  Google Scholar 

  10. T. Mah, N. L. Hecht, D. E. McCullum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, J. Mater. Sci. 19 (1984) 1191.

    Article  CAS  Google Scholar 

  11. J. J. Clark, E. R. Prack, M. I. Haider and L. C. Sawyer, Ceram. Engng Sci. Proc. 8 (1987) 717.

    Article  CAS  Google Scholar 

  12. D. J. Pysher, K. C. Goretta, R. S. Hodder Jr and R. E. Tressler, J. Amer. Ceram. Soc. 72 (1989) 284.

    Article  CAS  Google Scholar 

  13. K. L. Luthra, ibid. 69 (1986) C231.

    Article  CAS  Google Scholar 

  14. S. M. Johnson, R. D. Brittain and R. H. Lamoreaux, “Degradation of SiC Fibres”, in “High Temperature Materials Chemistry IV”, edited by Z. A. Munir, D. Cubicciotti and H. Tagawa (The Electrochemical Society, Pennington, NJ, 1988) pp. 355–61.

    Google Scholar 

  15. S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rowcliffe, J. Amer. Ceram. Soc. 71 (1988) C132.

    CAS  Google Scholar 

  16. J. Lipowitz, G. LeGrow, T. Lim and N. Langley, Ceram. Engng Sci. Proc. 9 (1988) 931.

    Article  CAS  Google Scholar 

  17. R. Bodet, private communication, The Pennsylvania State University (1990).

  18. T. Ishikawa, H. Ishikana and H. Teranishi, “Strength and Structure of SiC Fiber After Exposure to High Temperature”, in “High Temperature Materials Chemistry IV”, edited by Z. A. Munir, D. Cubicciotti and H. Tagawa (The Electrochemical Society, Pennington, NJ, 1988) pp. 205–11.

    Google Scholar 

  19. A. G. Evans, J. Amer. Ceram. Soc. 73 (1990) 187.

    Article  CAS  Google Scholar 

  20. G. Eriksson, Chem. Scripta 8 (1975) 100.

    CAS  Google Scholar 

  21. “JANAF Thermochemical Tables”, 3rd Edn, NSRDS-BS 37 (1986).

  22. I. Barin and O. Knacke, “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, New York, 1973).

    Google Scholar 

  23. P. M. Benson, K. E. Spear and C. G. Pantano, “Thermochemical Analyses of Interface Reactions in Carbon-Fiber Reinforced Glass Matrix Composites, in “Ceramic Microstructures '86”, edited by J. A. Pask and A. G. Evans (Plenum Press, New York, 1987) pp. 415–25.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bibbo, G.S., Benson, P.M. & Pantano, C.G. Effect of carbon monoxide partial pressure on the high-temperature decomposition of Nicalon fibre. J Mater Sci 26, 5075–5080 (1991). https://doi.org/10.1007/BF00549894

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549894

Keywords

Navigation