Advertisement

Journal of Materials Science

, Volume 26, Issue 18, pp 4869–4877 | Cite as

Trends in the microhardness of monocomponent and multicomponent chalcogenide glasses

  • M. F. Kotkata
Papers

Abstract

The results of Vickers microhardness (MHv) measurements on several series of chalcogenide semiconductor glasses are presented. The glasses were prepared under vacuum by the melt quenching technique. Trends of the hardness are explained in terms of the natural and compositional changes of the glasses as well as their glass formation tendency. The compositional variation of MHv at room temperature is characterized by being even for the binary system, Se-As; quasi-binary (ternary) systems, As2Se3-As2Te3 and AsSe-AsTe; and the ternary system, Ge-Se-Si; and by being uneven at certain specific concentrations for the binary isoelectronic system, Se-S (< 5 at%S); quasi-binary system, As2Se5-As2Te5 (40 mol% As2Te5); ternary system As-Se-TI (20 at%TI); and quaternary system, As-S-Se-Te (Te∶Se=1). In addition, it is found possible to prepare samples of glassy selenium having certain predicted mechanical properties by controlling the temperature before quenching (Ts).

Keywords

Selenium Binary System Ternary System Compositional Variation Specific Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Hayden, W. G. Moffatt and J. Wulff, “The Structure and Properties of Materials”, Vol. 3 “Mechanical Behaviour” (Wiley Eastern, New Delhi/New York, 1968).Google Scholar
  2. 2.
    M. Yamane and J. D. Mackenzie, J. Non-Cryst. Solids 15 (1974) 153.Google Scholar
  3. 3.
    R. L. Myuller, in “Chemistry of Solids” (in Russian) (Izd. LGU 1965), pp. 9–63.Google Scholar
  4. 4.
    Z. U. Borisova, “Glassy Semiconductors” (Plenum Press, New York/London, 1981).Google Scholar
  5. 5.
    B. T. Kolomiets, Phys. Status Solidi 7 (1964) 359.Google Scholar
  6. 6.
    Nevill Mott, “Conduction in Non-Crystalline Materials” (Clarendon Press, Oxford, 1987).Google Scholar
  7. 7.
    S. R. Ovshinsky, in “Disordered Materials: Science and Technology”, edited by D. Adler (Amorphous Institute Press, MI, USA, 1982) pp. 282–292.Google Scholar
  8. 8.
    M. F. Kotkata, M. H. El-Fouly, A. Z. El-Behay and L. A. El-Wahab, Mater. Sci. Engng 60 (1983) 163.Google Scholar
  9. 9.
    M. F. Kotkata and M. B. El-Den, J. de Physique 42 (1982) C4–931.Google Scholar
  10. 10.
    M. L. Theye, M. F. Kotkata, K. M. Kandil, A. Gheorghiu, C. Senemaud, J. Dixmier and F. Pradal, J, Non-Cryst. Solids (1991) in press.Google Scholar
  11. 11.
    M. F. Kotkata, M. H. El-Fouly, S. A. Fayek and S. A. El-Hakim, Semicond. Sci. Technol. 1 (1986) 313.Google Scholar
  12. 12.
    M. F. Kotkata, M. H. El-Fouly, K. Sedeek and L. A. El-Wahab, Proceedings of the 20th International Conference on Physics of Semiconductors, edited by E. M. Anastassckis and J. D. Jocunopoulis (World Scientific, 1990).Google Scholar
  13. 13.
    A. I. Popov, J. Phys. C 9 (1976) L675.Google Scholar
  14. 14.
    M. F. Kotkata and K. M. Kandil, Mater. Sci. Engng 95 (1987) 287.Google Scholar
  15. 15.
    E. G. Grochowski and W. Brenner, J. Non-Cryst. Solids 6 (1971) 83.Google Scholar
  16. 16.
    M. Kawarada and Y. Nishina, Jpn J. Appl. Phys. 14 (1975) 1519.Google Scholar
  17. 17.
    M. Misawa and K. Suzuki, J. Phys. Soc. Jpn 44 (1978) 1612.Google Scholar
  18. 18.
    G. Lucovsky, in “The Physics of Selenium and Tellurium”,- edited by E. Gerlach and P. Grosse (Springer-Verlag, Berlin/Heidelberg, 1979) p. 178.Google Scholar
  19. 19.
    M. F. Kotkata, L. Tóth, M. Füstoss-Wegner, G. Zentai and S. A. Nouh, unpublished.Google Scholar
  20. 20.
    M. F. Kotkata, L. Farkas, M. M. Radwan and S. A. Nouh, J. Mater. Sci. 26 (1991) in press.Google Scholar
  21. 21.
    N. F. Mott and E. A. Davis, “Electronic Processes in Non-Crystalline Materials” (Clarendon Press, Oxford, 1979).Google Scholar
  22. 22.
    I. A. Paribok-Alexandrovich, Sov. Phys. Solid State 11 (1970) 1631.Google Scholar
  23. 23.
    S. R. Elliott, “Physics of Amorphous Materials” (Longman, New York, 1984) pp. 94–103.Google Scholar
  24. 24.
    K. Somogui and M. Koós, Mater. Chem. Phys. 10 (1984) 237.Google Scholar
  25. 25.
    S. Asokan, M. V. N. Prasad, G. Parthasarathy and E. S. R. Gopal, Phys. Rev. Lett. 62 (1989) 808.Google Scholar
  26. 26.
    O. Uemura, V. Sagara and T. Satow, Phys. Status Solidi 26 (1974) 99.Google Scholar
  27. 27.
    J. E. Griffiths, G. P. Espinosa, J. P. Remeika and J. C. Phillips, Phys. Rev. B 25 (1982) 1272.Google Scholar
  28. 28.
    R. Azoulay, H. Thibierge and A. Brenac, J. Non-Cryst. Solids 18 (1975) 33.Google Scholar
  29. 29.
    A. Feltz, F. Schirrmeister and H. Kahnt, ibid. 35–36 (1980) 865.Google Scholar
  30. 30.
    D. J. Sarrach and J. P. de Neufville, ibid. 22 (1976) 245.Google Scholar
  31. 31.
    P. Boolchand and J. Grothaus, Solid State Commun. 45 (1983) 183.Google Scholar
  32. 32.
    M. K. El-Mously and M. F. Kotkata, Ind. J. Tech. 15 (1977) 296.Google Scholar
  33. 33.
    M. F. Kotkata, M. K. El-Mously and M. B. El-Den, Egypt. J. Solids 1 (1980) 166.Google Scholar
  34. 34.
    M. F. Kotkata, unpublished work.Google Scholar
  35. 35.
    M. F. Kotkata, M. H. El-Fouly and M. B. El-Den, Latin Amer. J. Metall. Mater. 5 (1985) 28.Google Scholar
  36. 36.
    M. F. Kotkata, M. H. El-Fouly and S. A. Fayek, J. Mater. Sci. 25 (1990) 2917.Google Scholar

Copyright information

© Chapman & Hall 1991

Authors and Affiliations

  • M. F. Kotkata
    • 1
  1. 1.Physics Department Faculty of ScienceAin Shams UniversityCairoEgypt

Personalised recommendations