Skip to main content
Log in

Transverse (interlaminar) cracking under tensile loading in pultruded CFRP

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The examination of microstructure of tensile specimens of pultruded 60% V f carbon fibre-reinforced epoxide of up to 6 mm unreduced diameter shows that transverse cracking precedes the tensile failure of groups of fibres. In material whose strength is ∼2 GN m−2, the process can commence in waisted specimens at stresses as low as 1 GN m−2; in those of unreduced section it was not detected below 1.5 GN m−2. This failure initiation stage can be associated with the decrease in the slope of the load-extension curve. With increasing load the inter-tow cracks were observed to grow and some surface fibre bundles detached. It is suggested that misaligned fibres in these surface bundles were straightened out and contributed to the load-carrying capacity of the rod. Only following detachment of numerous bundles (for the specimens with unreduced section) or growth of interlaminar cracks into the specimen shoulders (for those with a reduced gauge diameter) did tensile failure of fibre bundles lead to catastrophic fracture. It is to this last propagation stage that statistical models of failure of bundles at different cross-sections should refer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. K. O'brien, in “Damage in Composite Materials”, edited by K. L. Reifsnider, ASTM STP 775 (American Society for Testing and Materials, Philadelphia, 1982) p. 140.

    Google Scholar 

  2. D. Hull, “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1981) p. 119.

    Google Scholar 

  3. B. W. Rosen, AIAA J. 2 (1964) 1985.

    Google Scholar 

  4. M. Fuma, A. R. Bunsell and B. Harris, J. Mater. Sci. 10 (1975) 2062.

    Google Scholar 

  5. C. Zweben, in “Composite Materials: Testing and Design”, ASTM STP 460 (American Society for Testing and Materials, Philadelphia, 1969) p. 528.

    Google Scholar 

  6. R. B. McKee and G. Sinez, J. Elastoplastics 1 (1969) 185.

    Google Scholar 

  7. C. Zweben and B. Rosen, J. Mech. Phys. Solids 18 (1970) 189.

    Google Scholar 

  8. R. L. McCullough, “Concepts of Fibre-Resin Composites” (Marcel Dekter, New York, 1971) p. 57.

    Google Scholar 

  9. J. M. Lifshitz and A. Rotem, J. Mater. Sci. 7 (1972) 861.

    Google Scholar 

  10. J. J. Dibb, A. S. Wronski and B. R. Watsonadams, Composites 5 (1973) 227.

    Google Scholar 

  11. J. W. Hitchon, W. H. McCausland, and D. C. Phillips, AERE Report No. R8217, November (1975).

  12. C. Zweben, J. Mater. Sci. 12 (1977), 1325.

    Google Scholar 

  13. P. W. Barry, ibid. 13 (1978), 2177.

    Google Scholar 

  14. P. W. R. Beaumont and P. D. Anstice, ibid. 15 (1980) 2619.

    Google Scholar 

  15. A. S. Wronski, R. A. Evans and B. R. Watsonadams, University of Bradford Research Report, December (1976).

  16. M. R. Piggott, J. Mater. Sci. 16 (1981) 2837.

    Google Scholar 

  17. A. S. Wronski and T. V. Parry, ibid. 17 (1982) 3656.

    Google Scholar 

  18. P. D. Ewins, “Composites, Standards and Design”, NPL Conference Proceedings (IPS Science and Technology Press, 1974) p. 144.

  19. D. C. Phillips, J. Comp. Mater. 8 (1974) 130.

    Google Scholar 

  20. B. Harris, P. W. R. Beaumont and E. Moncunill De Ferran, J. Mater. Sci. 6 (1971) 238.

    Google Scholar 

  21. M. E. Waddoups, J. R. Eisenmann and B. E. Kaminski, ibid. 5 (1971) 446.

    Google Scholar 

  22. P. W. R. Beaumont and B. Harris, ibid. 7 (1972) 1265.

    Google Scholar 

  23. N. W. Daniels, Proc. Roy. Soc. A183 (1945) 405.

    Google Scholar 

  24. B. D. Coleman, J. Mech. Phys. Solids 7 (1958) 60.

    Google Scholar 

  25. D. E. Gucer and J. Gurland, ibid. 10 (1962) 365.

    Google Scholar 

  26. P. W. Barry, J. Mater. Sci. 13 (1978) 2177.

    Google Scholar 

  27. S. L. Phoenix, Fibre Sci. Technol. 7 (1974) 15.

    Google Scholar 

  28. A. S. Wronski and M. Pick, J. Mater. Sci. 12 (1977) 28.

    Google Scholar 

  29. T. V. Parry and A. S. Wronski, J. Mater. Sci. 16 (1981) 4301.

    Google Scholar 

  30. A. Kelly, “Composites, Standards and Design”, NPL Conference Proceedings (IPS Science and Technology Press, Guildford, 1974) p. 9.

    Google Scholar 

  31. D. G. Swift, J. Phys. D. 8 (1975) 223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wronski, A.S., Parry, T.V. Transverse (interlaminar) cracking under tensile loading in pultruded CFRP. J Mater Sci 19, 3421–3429 (1984). https://doi.org/10.1007/BF00549834

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549834

Keywords

Navigation