Skip to main content
Log in

Quantitative size-factors for metallic solid solutions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Quantitative size-factors, defined in terms of the effective atomic volume of the solute, have been calculated for 469 substitutional solid solutions using precision lattice parameter data available in the literature. Values of the volume size-factor, its linear derivative and a parameter expressing the deviation from Vegard's law, are tabulated in alphabetical order of the solvents. The application of these size-factors is discussed in relation to a number of physical, chemical and mechanical properties of solid solution alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. F. Blatt, Phys. Rev. 108 (1957) 285.

    Google Scholar 

  2. W. Desorbo, Phys. Rev. 130 (1963) 2177.

    Google Scholar 

  3. J. Friedel, Adv. in Physics 3 (1954) 446; Phil. Mag. 46 (1955) 514.

    Google Scholar 

  4. P. Haasen, “Physical Metallurgy”, editor R. W. Cahn (North Holland, Amsterdam, 1965), p. 821.

    Google Scholar 

  5. A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon Press, 1953).

  6. R. L. Fleischer, Acta Met. 9 (1961) 996; 11 (1963) 203.

    Google Scholar 

  7. H. Warlimont, “Physical Properties of Martensite and Bainite”, Iron and Steel Inst. Special Report 93 (1965) 58

    Google Scholar 

  8. L. S. Darken and R. W. Gurry, “Physical Chemistry of Metals” (McGraw-Hill, 1955).

  9. H. W. King, AIME Symposium on Alloying Behaviour and Effects in Concentrated Solid Solutions (Gordon and Breach, New York—in the press).

  10. W. Hume-Rothery, Acta Met. 14 (1966) 17.

    Google Scholar 

  11. T. B. Massalski and H. W. King, Progress in Materials Science 10 (1961) 1 (Pergamon Press, Oxford).

    Google Scholar 

  12. B. J. Pines, J. Phys. U.S.S.R. 3 (1940) 309.

    Google Scholar 

  13. G. Fournet, J. Phys. Radium 14 (1953) 374.

    Google Scholar 

  14. J. D. Eshelby, Solid State Physics 3 (1956) 79 (Academic Press, New York).

    Google Scholar 

  15. K. A. Gschneidner and G. H. Vineyard, J. Appl. Phys. 33 (1962) 3444.

    Google Scholar 

  16. N. F. Mott, Reports on Progress in Physics 25 (1962) 218 (Institute of Physics, London).

    Google Scholar 

  17. L. Vegard, Z. fur Physik 5 (1921) 17.

    Google Scholar 

  18. J. W. Heaton and A. C. Rose-Innes, J. Sci. Instr. 40 (1963) 369.

    Google Scholar 

  19. N. F. Mott and H. Jones, “The Theory of the Properties of Metals and Alloys” (Dover Publications, 1958).

  20. B. T. Matthias, T. H. Geballe and V. B. Compton, Rev. in Modern Physics 35 (1963) 1 (American Physical Society).

    Google Scholar 

  21. L. T. Claiborne, J. Phys. Chem. Solids 26 (1965) 653.

    Google Scholar 

  22. J. D. Eshelby, J. Appl. Phys. 25 (1954) 255.

    Google Scholar 

  23. P. Haasen, Z. für Metallkunde 55 (1964) 55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, H.W. Quantitative size-factors for metallic solid solutions. J Mater Sci 1, 79–90 (1966). https://doi.org/10.1007/BF00549722

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549722

Keywords

Navigation