Skip to main content
Log in

The electrical properties of plastically bent p-type indium antimonide between 50 and 200° k

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A special technique of plastic bending at elevated temperatures was applied to introduce, into a pair of simultaneously deformed, weakly p-doped, InSb single crystal bars, an excess, of indium and antimony dislocations, respectively. Hall coefficient and electrical conductivity of specimens containing an excess of In or Sb dislocations, of annealed control specimens, and of the Ge-doped starting material were measured between 50 and 200° K. Indium dislocations in Ge-doped InSb show not only an acceptor, but also a donor action; Sb dislocations show only an acceptor action. The electrostatic charge of the dislocations due to dislocation-impurity interaction has more influence on the measured energy level of indium dislocation states than on those of antimony. These results may be explained by assuming an energy level scheme in which the energy level of the indium dislocation states lies above and that of the antimony dislocation states below the acceptor level of the Ge impurity atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Holt, J. Phys. and Chem. Solids 23 (1962) 1353.

    Google Scholar 

  2. P. Haasen, Acta Metallurgica 5 (1957) 598.

    Google Scholar 

  3. J. J. Duga, Bull. Amer. Phys. Soc. Ser. II 3 (1958) 378.

    Google Scholar 

  4. H. C. Gatos and M. C. Finn, J. Metals 13 (1961) 77.

    Google Scholar 

  5. J. J. Duga, ibid 13 (1961) 77.

    Google Scholar 

  6. H. C. Gatos, M. C. Finn, and M. C. Lavine, J. Appl. Phys. 32 (1961) 1174.

    Google Scholar 

  7. J. J. Duga, Ibid 33 (1962) 169.

    Google Scholar 

  8. R. K. Mueller and R. L. Jacobson, ibid 33 (1962) 2341.

    Google Scholar 

  9. R. M. Broudy, Adv. Phys. 12 (1963) 135.

    Google Scholar 

  10. R. K. Mueller and K. N. Maffitt, J. Appl. Phys. 35 (1964) 734.

    Google Scholar 

  11. R. L. Bell, R. Latkowski, and A. F. W. Willoughby, J. Materials Sci. 1 (1966) 66.

    Google Scholar 

  12. S. Amélinckx, “Solid-State Physics”, Supplement 6 (Academic Press, New York/London, 1964).

    Google Scholar 

  13. J. F. Nye, Acta Metallurgica 1 (1953) 153.

    Google Scholar 

  14. J. J. Duga, R. K. Willardson, and A. C. Beer, J. Appl. Phys. 30 (1959) 1798.

    Google Scholar 

  15. H. C. Gatos and M. C. Lavine, J. Electrochem. Soc. 107 (1960) 427.

    Google Scholar 

  16. H. L. Henneke, J. Appl. Phys. 36 (1965) 2967.

    Google Scholar 

  17. H. C. Gatos and M. C. Lavine, J. Phys. and Chem. Solids 14 (1960) 169.

    Google Scholar 

  18. E. Peissker, P. Haasen, and H. Alexander, Phil. Mag. (8) 7 (1962) 1279.

    Google Scholar 

  19. M. Wilhelm (private communication).

  20. B. I. Boltaks and V. I. Sokolov, Soviet Phys.-Sol. St. 5 (1963) 785.

    Google Scholar 

  21. I. A. Gusev and A. N. Murin, ibid 6 (1964) 932.

    Google Scholar 

  22. R. B. Dzhanelidze and N. I. Kurdiani, ibid 5 (1963) 501.

    Google Scholar 

  23. M. C. Lavine, H. C. Gatos, and M. C. Finn, J. Electrochem. Soc. 108 (1961) 974.

    Google Scholar 

  24. R. W. Cunningham, E. E. Harp, and W. M. Bullis, Proc. Int. Conf. Semiconductor Physics, Exeter (The Institute of Physics and The Physical Society, London, 1962) p. 732.

    Google Scholar 

  25. W. M. Bullis and V. Harrap, Proc. Int. Conf. Physics of Semiconductors, Paris (Dunod, Paris, 1964) p. 847.

    Google Scholar 

  26. W. T. Read Jr, Phil. Mag. (7) 45 (1954) 775.

    Google Scholar 

  27. W. Schröter, Phys. Stat. Sol. 21 (1967) 211.

    Google Scholar 

  28. A. G. Tweet, Phys. Rev. 99 (1955) 1245.

    Google Scholar 

  29. E. H. Putley, Proc. Phys. Soc. 73 (1959) 128.

    Google Scholar 

  30. O. Madelung and H. Welker, Z. angew. Phys. 5 (1953) 12.

    Google Scholar 

  31. E. H. Putley, Proc. Phys. Soc. 73 (1959) 280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baitinger, U., Arndt, J. & Schnepf, D. The electrical properties of plastically bent p-type indium antimonide between 50 and 200° k. J Mater Sci 4, 396–404 (1969). https://doi.org/10.1007/BF00549704

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549704

Keywords

Navigation