Advertisement

Theoretica chimica acta

, Volume 36, Issue 4, pp 289–296 | Cite as

The synthetic construction of spin eigenfunctions in second quantization representation

  • Paul J. A. Ruttink
Commentationes

Abstract

The second quantization method is used to derive a recursion formula for the construction of spin eigenfunctions in the branching diagram method which simplifies the application of this method considerably. By application of this recursion formula the branching diagram functions are expressed as linear combinations of spin-paired functions. A one-to-one correspondence is established between the set of branching diagram paths and the set of spin-paired functions used to construct the branching diagram functions. This leads to a simple method for the construction of independent sets of spinpaired functions for arbitrary multiplicities.

Key words

Genealogical construction Spin-pairing method Independent spin eigenfunctions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yamanouchi,T.: Proc. Phys. Math. Soc. (Japan) 19, 436 (1937)Google Scholar
  2. 1. a)
    Rutherford,D.F.: Substitutional analysis. Cambridge, England: University Press 1948Google Scholar
  3. 1. b)
    McIntosh,H.V.: J. Math. Phys. 1, 453 (1960)Google Scholar
  4. 1. c)
    Coleman,A.J.: Advan. Quantum Chem. 4, 83 (1968)Google Scholar
  5. 2.
    Kotani,M., Amemiya,A., Ishiguro,E., Kimura,T.: Tables of molecular integrals. Tokyo: Maruzen 1963Google Scholar
  6. 3.
    Pauncz,R.: Alternant molecular orbital method. London: Saunders 1967Google Scholar
  7. 4.
    McWeeny,R., Sutcliffe,B.T.: Methods of molecular quantum mechanics. London: Academic Press 1969Google Scholar
  8. 5.
    Löwdin,P.-O.: Phys. Rev. 97, 1509 (1955); Rev. Mod. Phys. 34, 520 (1962); Rev. Mod. Phys. 36, 966 (1964)Google Scholar
  9. 6.
    Kouba,J., Öhrn,Y.: Intern. J. Quantum Chem. 3, 513 (1969)Google Scholar
  10. 7.
    Smith,V.H., Harris,F.E.: J. Math. Phys. 10, 771 (1969)Google Scholar
  11. 8.
    Schaefer III,H.F.: J. Comp. Phys. 6, 142 (1970);Google Scholar
  12. 8. a)
    Kuprievich,V.A., Kruglyak,Y.A., Mozdor,E.V.: Croat. Chem. Acta 43, 1 (1971)Google Scholar
  13. 9.
    Rumer,G.: Göttinger Nachr. 1932, 377Google Scholar
  14. 9. a)
    Eyring,H., Walter,J., Kimball,G.E.: Quantum chemistry. New York: Wiley 1944Google Scholar
  15. 10.
    Moshinsky,M.: In: Moshinsky,M., Brody,T.A., Jacob,G. (Eds.): Many-body problems and other selected topics in theoretical physics, Vol. I. New York: Gordon and Breach 1966Google Scholar
  16. 10. a)
    Moshinsky,M.: J. Math. Phys. 4, 1128 (1963)Google Scholar
  17. 11.
    Merzbacher,E.: Quantum mechanics, 2nd Ed., Chapters 20 and 21. New York: Wiley 1970Google Scholar
  18. 12.
    Harris,F.E.: Advan. Quantum Chem. 3, 61 (1967)Google Scholar
  19. 13.
    Simons,J.: J. Chem. Phys. 55, 1218 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Paul J. A. Ruttink
    • 1
  1. 1.Theoretical Chemistry GroupRijksuniversiteit UtrechtThe Netherlands

Personalised recommendations