Advertisement

Theoretica chimica acta

, Volume 36, Issue 4, pp 275–287 | Cite as

Direct determination of pair natural orbitals

A new method to solve the multi-configuration hartree-fock problem for two-electron wave functions
  • Reinhart Ahlrichs
  • Frank Driessler
Commentationes

Abstract

A method is proposed to solve the two-electron Schrödinger equation by a rapidly converging iterative procedure. The wavefunction is obtained in terms of its NO's. The special features of the present method are:
  1. 1.

    Each iteration requires only the computational equivalent of a conventional Hartree-Fock iteration.

     
  2. 2.

    Within each iteration we improve simultaneously the NO's, the CI expansion coefficients and the total energy.

     
  3. 3.

    The construction of a CI matrix is never required.

     

We further propose simplified NO-equations the solution of which requires a small fraction of computertime only. As examples of the efficiency of these methods we report applications to the 11Sstate of He, the 11 g + , 13 u + states of H2, and IEPA,PNO-CI, and CEPA type computations on CH4.

Key words

Pseudo natural orbitals Pair natural orbitals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hurley,A.C., Lennard-Jones,J., Pople,J.A.: Proc. Soc. (London A 220, 446 (1953)Google Scholar
  2. 2.
    Löwdin,P.-O., Shull,H.: Phys. Rev. 101, 1730 (1956);Google Scholar
  3. 2. a)
    Shull,H.: J. Chem. Phys. 30, 1405 (1959)Google Scholar
  4. 3.
    Nesbet,R.K.: Advan. Chem. Phys. 14, 1 (1969)Google Scholar
  5. 4.
    Sinanoglu,O.: Advan. Chem. Phys. 14, 237 (1969)Google Scholar
  6. 5.
    Jungen,M., Ahlrichs,R.: Theoret. Chim. Acta (Berl.) 17, 339 (1970)Google Scholar
  7. 6.
    Meyer,W.: J. Chem. Phys. 58, 1017 (1973)Google Scholar
  8. 7. a)
    Ahlrichs,R., Lischka,H., Staemmler,V., Kutzelnigg,W.: J. Chem. Phys., in pressGoogle Scholar
  9. 7. b)
    Ahlrichs.R., Driessler,F., Lischka,H., Staemmler,V., Kutzelnigg,W.: J. Chem. Phys., in pressGoogle Scholar
  10. 8.
    Edmiston,C., Krauss,M.: J. Chem. Phys. 42, 1119 (1965); 45, 1833 (1966)Google Scholar
  11. 9.
    Weiss,A.W.: Phys. Rev. 162, 71 (1967)Google Scholar
  12. 10.
    Sanders,W.A., Krauss,M.: J. Res. Natl. Bur. Stand. 72 A, 85 (1968)Google Scholar
  13. 11.
    Palting,P.: Intern. J. Quantum Chem. 7, 717 (1973)Google Scholar
  14. 12.
    Driessler,F., Ahlrichs,R.: Chem. Phys. Letters 23, 571 (1973)Google Scholar
  15. 13.
    Huzinaga,S.: J. Chem. Phys. 42, 1293 (1965)Google Scholar
  16. 14.
    Kolos,W., Wolniewicz,L.: J. Chem. Phys. 49, 404 (1968)Google Scholar
  17. 15.
    Rothenberg,S., Davidson,E.R.: J. Chem. Phys. 45, 2560 (1966)Google Scholar
  18. 16.
    Kolos,W., Wolniewicz,L.: J. Chem. Phys. 43, 2499 (1965)Google Scholar
  19. 17.
    Ahlrichs,R., Kutzelnigg,W., Bingel,W.A.: Theoret. Chim. Acta (Berl.) 5, 289 (1966)Google Scholar
  20. 18.
    Pekeris,C.L.: Phys. Rev. 112, 1649 (1958)Google Scholar
  21. 19. a)
    Kutzelnigg, W.: Theoret. Chim. Acta (Berl.) 1, 327 (1963)Google Scholar
  22. 19. b)
    Ahlrichs,R., Kutzelnigg,W.: J. Chem. Phys. 48, 1819 (1968)Google Scholar
  23. 20.
    Das,G., Wahl,A.C.: J. Chem. Phys. 44, 87 (1966)Google Scholar
  24. 21.
    Sabelli,N., Hinze,J.: J. Chem. Phys. 50, 684 (1969)Google Scholar
  25. 22.
    Reid,C.E., Öhrn,Y.: Rev. Mod. Phys. 35, 445 (1963)Google Scholar
  26. 23.
    Grein,F., Chang,T.C.: Chem. Phys. Letters 12, 44 (1971)Google Scholar
  27. 24.
    Ahlrichs,R.: Theoret. Chim. Acta (Berl.), in pressGoogle Scholar
  28. 25.
    Ahlrichs,R., Keil,F.: J. Am. Chem. Soc., in pressGoogle Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Reinhart Ahlrichs
    • 1
  • Frank Driessler
    • 2
  1. 1.Institut für Physikalische Chemie der Universität KarlsruheFederal Republic of Germany
  2. 2.Lehrstuhl für Theoretische Chemie der Ruhr-Universität BochumFederal Republic of Germany

Personalised recommendations