Journal of Materials Science

, Volume 6, Issue 11, pp 1355–1361 | Cite as

Substitutional dynamic strain ageing in an iron — 1.1 at. % niobium alloy

  • M. R. Winstone
  • Rees D. Rawlings


The mechanical properties of an Fe-1.1 at. % Nb alloy have been studied in compression over the temperature range 300 to 1100°K. The substitutional niobium atoms were responsible for dynamic strain ageing which resulted in a small peak in the temperature dependence of the flow stress, negative strain rate sensitivity, and serrated stress strain curves.

The serrations were preceded by a strain rate and temperature dependent critical strain. These dependencies were analysed using theories that have been successfully applied to substitutional strain ageing in fcc structures. The analysis showed that, unlike in fcc structures, the apparent activation energy for the onset of serrated flow increased at the faster strain rates; this was attributed to the vacancies produced by the plastic deformation rapidly annealing out due to the high temperatures involved at the faster strain rates.


Activation Energy Niobium Flow Stress Stress Strain Curve Apparent Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Baird, Iron and Steel 36 (1963) 450.Google Scholar
  2. 2.
    W. R. Thomas and G. M. Leak, J. Iron Steel Inst. 180 (1955) 155.Google Scholar
  3. 3.
    S. Kinoshita, P. J. Wray, and G. T. Horne, Trans. AIME 233 (1965) 1902.Google Scholar
  4. 4.
    B. J. Brindley and J. T. Barnby, Acta Met. 14 (1966) 1765.Google Scholar
  5. 5.
    G. F. Bolling, Phil. Mag. 4 (1959) 537.Google Scholar
  6. 6.
    B. Russell, ibid 8 (1963) 615.Google Scholar
  7. 7.
    A. J. R. Soler-Gomez and W. J. Mcg. Tegart, ibid 20 (1969) 495.Google Scholar
  8. 8.
    J. Glen, J. Iron Steel Inst. 186 (1957) 21.Google Scholar
  9. 9.
    Idem, ibid 190 (1958) 114.Google Scholar
  10. 10.
    G. R. Speich, Trans. AIME 850 (1962) 850.Google Scholar
  11. 11.
    R. M. Forbes Jones and D. R. F. West, J. Iron Steel Inst. 208 (1970) 270.Google Scholar
  12. 12.
    A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. 62 (1949) 49.Google Scholar
  13. 13.
    A. H. Cottrell, Phil. Mag. 14 (1953) 829.Google Scholar
  14. 14.
    R. K. Ham and D. Jaffrey, ibid 15 (1967) 247.Google Scholar
  15. 15.
    R. T. Pascoe, K. C. Radford, R. D. Rawlings, and C. W. A. Newey, J. Sci. Instr. 44 (1967) 366.Google Scholar
  16. 16.
    J. W. Christian and B. C. Masters, Proc. Roy. Soc. 281 (1964) 223.Google Scholar
  17. 17.
    W. Charnock, Phil. Mag. 19 (1969) 209.Google Scholar
  18. 18.
    J. D. Lubahn, Trans. Amer. Soc. Metals 44 (1952) 643.Google Scholar
  19. 19.
    B. A. Wilcox and A. R. Rosenfield, Mater. Sci. Eng., 1 (1966) 201.Google Scholar
  20. 20.
    D. E. Peacock, “Point Defects in some bcc Transition Metals,” Ph.D. thesis (1962) University of London.Google Scholar
  21. 21.
    D. J. Dingley and D. McLean, Acta Met. 15 (1967) 885.Google Scholar
  22. 22.
    B. J. Brindley and P. J. Worthington, ibid 17 (1969) 1357.Google Scholar
  23. 23.
    D. Munz and E. Macherauch, Z. Metalk. 57 (1966) 552.Google Scholar
  24. 24.
    W. Charnock, Phil. Mag. 20 (1969) 427.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1971

Authors and Affiliations

  • M. R. Winstone
    • 1
  • Rees D. Rawlings
    • 1
  1. 1.Department of MetallurgyImperial College of Science and TechnologyLondonUK

Personalised recommendations