Skip to main content
Log in

The morphology of oxide reduction: Chromic oxide

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanism of the high shrinkage that occurs in chromic oxide in reducing conditions has been investigated by micrographic, analytical, electrical resistance, and other means. The effect of the reducing conditions is to modify the surface of the oxide particles, the core remaining normal oxide (i.e. oxygen excess). The modification is predominantly a change to a lower oxide or oxides and/or metal, although transitional formation of oxygen-deficient oxide is implied. In oxidising conditions (which cause fritting, but not shrinkage), modification to the extent that surfaces become of approximately stoichiometric proportions also occurs, but this change is apparently caused by loss of trioxide and results in unreactive oxide.

Types of electrical resistance test employed include (i) constant low-temperature, variable-oxygen, p/n tests on compacts and powders, and (ii) variable-temperature tests across a compact surface, across a fracture, and across chromium trioxide undergoing decomposition.

Additionally, chromium trioxide has been decomposed to chromic oxide over the range 400 to 1400° C, in argon and in oxygen. The apparent O/Cr ratio decreases on decomposition at 1400° C, particularly markedly in an oxygen atmosphere, and is accompanied by a drastic reduction in reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. N. Stone and N. A. Lockington, Powder Met. 7 (1964) 113.

    Google Scholar 

  2. Idem, ibid. 8 (1965) 81.

    Google Scholar 

  3. H. E. N. Stone, Ph.D. Thesis, London (1966).

  4. L. Navias, J. Amer. Ceram. Soc. 44 (1961) 434.

    Google Scholar 

  5. W. J. Kramers and J. R. Smith, Trans. Brit. Ceram. Soc. 56 (1957) 590.

    Google Scholar 

  6. J. P. Roberts and C. Wheeler, Trans. Faraday Soc. 56 (1960) 570.

    Google Scholar 

  7. J. P. Roberts and J. Hutchings, ibid 55 (1959) 1394.

    Google Scholar 

  8. H. J. Alsopp and J. P. Roberts, ibid 1386.

    Google Scholar 

  9. F. Adcock, J. Iron Steel Inst. 115 (1927) 369.

    Google Scholar 

  10. A. H. Sully, E. A. Brandes, and A. G. Provan, J. Inst. Metals 81 (1952) 569.

    Google Scholar 

  11. D. J. M. Bevan, J. P. Shelton, and J. S. Anderson, J. Chem. Soc. (1948) 1729.

  12. W. C. Hagel and A. U. Seybolt, J. Electrochem. Soc. 108 (1961) 1146.

    Google Scholar 

  13. W. A. Fischer and G. Lorenz, Archiv. Eisenhut. 28 (1957) 497.

    Google Scholar 

  14. Idem, Z. physik. Chem. 18 (1958) 308.

    Google Scholar 

  15. E. R. S. Winter, J. Chem. Soc. (1955) 3824.

  16. S. E. Voltz and S. W. Weller, J. Amer. Ceram. Soc. 75 (1953) 5227.

    Google Scholar 

  17. R. J. Davis, Trans. Brit. Ceram. Soc. 56 (1957) 586

    Google Scholar 

  18. D. R. Chapman, R. H. Griffith, and J. D. F. Marsh, Proc. Roy. Soc. 224A (1954) 419.

    Google Scholar 

  19. T. J. Gray, “Chemistry of the Solid State”, edited by Garner (Butterworths, London, 1955).

    Google Scholar 

  20. K. Hauffe and J. Block, Z. physik. Chem. 198 (1951) 232.

    Google Scholar 

  21. J. A. Champion, Brit. J. Appl. Physics 15 (1964) 633.

    Google Scholar 

  22. C. Wagner, Z. physik. Chem. 22 (1933) 181.

    Google Scholar 

  23. O. Kubaschewski and B. E. Hopkins, “Oxidation of Metals and Alloys” (Butterworths, London, 1962), p. 8 et seq.

    Google Scholar 

  24. B. Kubota, N. Nishikawa, A. Yanase, E. Hirota, T. Mihara, and Y. Iida, J. Amer. Ceram. Soc. 46 (1963) 550.

    Google Scholar 

  25. P. Arthur and J. N. Ingraham, US Patent 3,117,093 (1964).

  26. B. Kubota, J. Amer. Ceram. Soc. 44 (1961) 239.

    Google Scholar 

  27. D. Caplan and M. Cohen, J. Electrochem. Soc. 108 (1961) 438.

    Google Scholar 

  28. Idem, Trans. AIME 194 (1952) 1057.

    Google Scholar 

  29. N. Schönberg, Acta Chem. Scand. 8 (1954) 221.

    Google Scholar 

  30. M. Udy, “Chromium” (Reinhold, New York, 1956).

    Google Scholar 

  31. M. M. Chen and J. Chipman, Trans. ASM 38 (1947) 70.

    Google Scholar 

  32. D. C. Hilty, W. D. Forgeng, and R. L. Folkmann, Trans. AIME 203 (1955) 253.

    Google Scholar 

  33. R. E. Hook and A. M. Adair, Trans. AIME Met. Soc. 230 (1964) 1278.

    Google Scholar 

  34. Y. A. Danilovitch and A. H. Morosov, FizKhim Osnovy Proizv. Stali, Moscow (1964) 223.

  35. R. V. Pathy and R. G. Ward, J. Iron Steel Inst. 202 (1964) 995.

    Google Scholar 

  36. A. U. Seybolt, J. Electrochem. Soc. 107 (1960) 147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stone, H.E.N., Lockington, N.A. The morphology of oxide reduction: Chromic oxide. J Mater Sci 2, 112–117 (1967). https://doi.org/10.1007/BF00549569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549569

Keywords

Navigation