Advertisement

Theoretica chimica acta

, Volume 55, Issue 4, pp 301–305 | Cite as

Matrix elements of the Coulomb Green function between Slater orbitals

  • Anthony C. Tanner
  • Bruno Linder
Original Investigations

Abstract

Analytic expressions are given for integrals of the Coulomb Green function with Slater type atomic orbitals. The results involve hypergeometric functions.

Key words

Perturbation theory Coulomb Green function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Freed, K. F.: Ann. Rev. Phys. Chem. 22, 313 (1971)Google Scholar
  2. 2.
    Linderberg, J., Öhrn, Y.: Propagators in quantum chemistry. New York: Academic Press 1973Google Scholar
  3. 3.
    Tanner, A. C., Linder, B.: unpublishedGoogle Scholar
  4. 4.
    Reid, C. E.: J. Comp. Phys. 15, 522 (1974)Google Scholar
  5. 5.
    Vetchinkin, S. I., Kchristenko, S. V.: Chem. Phys. Letters 1, 437 (1967)Google Scholar
  6. 6.
    Gavrila, M.: Phys. Rev. 163, 147 (1967)Google Scholar
  7. 7.
    White, R. J., Stillinger, F. H.: J. Chem. Phys. 52, 5800 (1970)Google Scholar
  8. 8.
    Shimamura, I.: J. Phys. Soc. Jap. 40, 239 (1976)Google Scholar
  9. 9.
    Maquet, A.: Phys. Rev. A 15, 1088 (1977)Google Scholar
  10. 10.
    Kelsey, E. J., Macek, J.: J. Math. Phys. 17, 1182 (1976)Google Scholar
  11. 11.
    Meixner, J.: Math. Z. 36, 677 (1933)Google Scholar
  12. 12.
    Mapleton, R. A.: J. Math. Phys. 2, 478 (1961)Google Scholar
  13. 13.
    Hameka, H. F.: J. Chem. Phys. 47, 2728 (1967)Google Scholar
  14. 14.
    Hostler, L.: J. Math. Phys. 5, 591 (1964)Google Scholar
  15. 15.
    Whittaker, E. T., Watson, G. N.: A course of modern analysis, p. 337. Cambridge: Cambridge University Press 1927Google Scholar
  16. 16.
    Buchholz, H.: The confluent hypergeometric function New York: Springer-Verlag 1969Google Scholar
  17. 17.
    Slater, L. J.: Confluent hypergeometric functions. Cambridge: Cambridge University Press 1960Google Scholar
  18. 18.
    Howell, W. T.: Phil. Mag. 28, 493 (1939)Google Scholar
  19. 19.
    Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions p. 355. New York: Dover 1970Google Scholar
  20. 20.
    Gradshteyn, I. S., Ryzhik, I. M.: Tables of integrals, series, and products, Formula 6.643.2. New York: Academic Press 1965Google Scholar
  21. 21.
    Copson, E. T.: An introduction to the theory of functions of a complex variable, p. 248. London: Oxford University Press 1955Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Anthony C. Tanner
    • 1
  • Bruno Linder
    • 1
  1. 1.Department of ChemistryFlorida State UniversityTallahasseeUSA

Personalised recommendations