Skip to main content
Log in

Hertzian fracture of Pyrex glass under quasi-static loading conditions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hertzian fracture tests were conducted using an Instron on Pyrex glass specimens with various surface conditions, including lubricants, employing steel, Al2O3, WC and Pyrex glass indentors of 0.79 to 12.7 mm radius under ambient air and high vacuum environments at cross-head speeds of 8.5×10−6 to 2.1×10−4m sec−1. The results were not in strict accord with Auerbach's law, nor any of the existing energy-balance Hertzian fracture theories. Rather, they indicated that surface roughness and friction modified the Hertz stress field so that the maximum tensile stress at the surface occurred outside the contact circle. Further, they indicated that Hertzian fracture occurred by the direct, unstable growth into a cone crack of a pre-existing flaw at the displaced site of the maximum tensile stress, the flaw size responsible for the fracture decreasing with decrease in ball size (contact radius). Once a cone crack occurred, its length and growth were described reasonably well by Roesler's theory; however, his constant appears to be too high by a factor of about 5. A surface energy of @ 4 J m−2 was derived from bend tests on specimens similar to those used in the Hertzian fracture tests. Using this value, the crack sizes which lead to fracture were estimated to range between 0.6 and 3.5 μm for the conditions investigated here. The increase in the critical load for Hertzian fracture with indentation velocity was concluded to be due to kinetic effects of water vapour acting at the tip of the crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hertz, J. Reine Angew. Math. 92 (1881) 156; Vehandlungen des Vereins zur Beforderung des Gewerbe Fleisses, 61 (1882) 449; reprinted in English, “Hertz's Miscellaneous Papers” (MacMillan, London, 1896) ch. 5 and 6.

    Google Scholar 

  2. F. Auerbach, Ann. Phys. Chem. 43 (1891) 61.

    Google Scholar 

  3. F. C. Roesler, Proc. Phys. Soc. 69B (1956) 981.

    Google Scholar 

  4. F. C. Frank and B. R. Lawn, Proc. Roy. Soc. 299A (1967) 291.

    Google Scholar 

  5. B. R. Lawn, J. Appl. Phys. 39 (1968) 4828.

    Google Scholar 

  6. F. B. Langitan and B. R. Lawn, ibid 40 (1969) 4009.

    Google Scholar 

  7. Idem, ibid 41 (1970) 3357.

    Google Scholar 

  8. F. C. Roesler, Proc. Phys. Soc. 69B (1956) 981.

    Google Scholar 

  9. T. R. Wilshaw, J. Phys. 4 (1971) 1567.

    Google Scholar 

  10. A. G. Mikosza and B. R. Lawn, J. Appl. Phys. 42 (1971) 5540.

    Google Scholar 

  11. M. Swain, T. Williams, B. Lawn and T. Beek, J. Mater. Sci. 8 (1973) 1153.

    Google Scholar 

  12. B. R. Lawn and R. Wilshaw, ibid 10, (1975) 1049.

    Google Scholar 

  13. A. G. Evans and T. R. Wilshaw, Acta. Met. 24 (1976) 939.

    Google Scholar 

  14. A. S. Argon, Proc. Roy. Soc. 250A (1959) 472.

    Google Scholar 

  15. J. P. A. Tillett, Proc. Phys. Soc. London Sect. B 60 (1956) 55.

    Google Scholar 

  16. H. L. Oh and I. Finnie, J. Mech. Phys. Solids 18 (1967) 401.

    Google Scholar 

  17. B. Hamilton and H. Rawson, ibid 18 (1970) 127.

    Google Scholar 

  18. J. S. Nadeau and A. S. Rao, J. Canad. Ceram. Soc. 41 (1972) 63.

    Google Scholar 

  19. J. S. Nadeau, J. Amer. Ceram. Soc. 56, (1973) 467.

    Google Scholar 

  20. A. S. Argon, Y. Haril and E. Orowan, ibid 43 (1960) 86.

    Google Scholar 

  21. J. P. Andrews, Phys. Soc. London 75 (1970) 697.

    Google Scholar 

  22. J. J. Benbow, ibid 75 (1960) 697.

    Google Scholar 

  23. J. Lu, Y. Chen, G. Sargent and H. Conrad, unpublished research, University of Kentucky (1977).

  24. S. M. Wiederhorn, J. Amer. Ceram. Soc. 52 (1969) 99.

    Google Scholar 

  25. W. F. Adler, Air Force Materials Lab. Rept. no. 4, F. 33615-73-C-5057 May (1975).

  26. C. J. Culp, J. Soc. Glass Technol. 41 (1957) 157.

    Google Scholar 

  27. K. L. Johnson, J. J. O'connor and A. C. Woodward, Proc. Roy. Soc. London A293 (1972) 710.

    Google Scholar 

  28. D. R. Gilroy and W. Hirst, Brit. J. Appl. Phys. (J. Phys. D.) Ser. 2 2 (1969) 1784.

    Google Scholar 

  29. Sally D. Scaptura, Corning Co, private communication (1978).

  30. T. C. Baker and F. W. Preston, J Appl. Phys. 17 (1945) 170,179.

    Google Scholar 

  31. R. J. Charles, ibid 29 (1958) 1554.

    Google Scholar 

  32. R. E. Mould, J. Amer. Ceram. Soc. 44 (1961) 481.

    Google Scholar 

  33. A. G. Evans, ibid 56 (1973) 405.

    Google Scholar 

  34. A. K. Lyle, “Glass Compositions”, Handbook of Glass Manufacturing, Vol. 1, edited by F. V. Tooley (Ogden, New York) (1974) p. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, H., Keshavan, M.K. & Sargent, G.A. Hertzian fracture of Pyrex glass under quasi-static loading conditions. J Mater Sci 14, 1473–1494 (1979). https://doi.org/10.1007/BF00549324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549324

Keywords

Navigation