Journal of Materials Science

, Volume 14, Issue 6, pp 1457–1464 | Cite as

Critical currents of in situ formed multifilamentary Cu-Nb3Sn composites

  • J. Bevk
  • James P. Harbison


Critical current densities of in situ formed Cu-Nb3Sn composites with discontinuous filaments were measured as a function of superconducting volume fraction, matrix resistivity, area reduction ratio, and applied magnetic field. In agreement with recent modelling by Tinkham and co-workers, the effective superconducting volume fraction in a given composite was found to be field-dependent, necessitating the distinction between microstructural and electrical percolation. In composites with a low filament volume fraction, proximity effect coupling, controlled by matrix resistivity, was found to be the dominant factor determining both the composite remnant resistivity and the critical current density. For sufficiently high filament volume fractions and area reduction ratios, the remnant resistivities fall below the level of detection, as predicted by theory, and critical current densities become comparable to those of continuous filament composites. SEM, TEM, and STEM analysis reveal a dense distribution of submicron, ribbon-like Nb3Sn filaments in relatively pure Cu matrix. The microstructure of the filaments is equi-axed with an average grain size of ∼ 400Å, ensuring effective flux pinning.


Critical Current Density Proximity Effect High Filament Matrix Resistivity Filament Composite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. Tsuei, M. Suenaga and W. B. Sampson, Appl. Phys. Letters 25 (1974) 318.Google Scholar
  2. 2.
    J. P. Harbison and J. Bevk, J. Appl. Phys. 48 (1977) 5180.Google Scholar
  3. 3.
    S. Foner, E. J. McNiff Jr., B. B. Schwartz and R. Roberge, Appl. Phys. Letters 31 (1977) 853.Google Scholar
  4. 4.
    R. Bormann, L. Schultz and H. C. Freyhardt, ibid 32 (1978) 79.Google Scholar
  5. 5.
    J. D. Verhoeven, D. K. Finnemore, E. D. Gibson, J. E. Ostenson and L. F. Goodrich, ibid 33 (1978) 101.Google Scholar
  6. 6.
    C. C. Tsuei, Science 180 (1973) 57.Google Scholar
  7. 7.
    A. Davidson, M. R. Beasley and M. Tinkham, IEEE Tram. Mag. MAG-11 (1975) 276.Google Scholar
  8. 8.
    L. Schultz and R. Bormann, J. Appl. Phys. 50 (1979) 418.Google Scholar
  9. 9.
    R. Roberge and J. L. Fihey, J. Appl. Phys. 48 (1977) 1327.Google Scholar
  10. 10.
    H. Scher and R. Zallen, J. Chem. Phys. 53 (1970) 3759.Google Scholar
  11. 11.
    R. Zallen and H. Scher, Phys. Rev. B4 (1971) 4471.Google Scholar
  12. 12.
    J. Bevk, J. P. Harbison and J. L. Bell, J. Appl. Phys. 49 (1978) 6031.Google Scholar
  13. 13.
    C. J. Lobb, M. Tinkham and W. J. Skocpol, Solid State Commun. 27 (1978) 1273.Google Scholar
  14. 14.
    J. L. Fihey, P. Nguyen-Duy and R. Roberge, J. Mater. Sci. 11 (1976) 2307.Google Scholar
  15. 15.
    J. Bevk, J. P. Harbison and J. L. Bell, TMS-AIME Fall Meeting, Chicago (1977) (unpublished).Google Scholar
  16. 16.
    A. Davidson, Ph.D. thesis, Harvard University (1976).Google Scholar
  17. 17.
    A. Davidson and M. Tinkham, Phys. Rev. B13 (1976) 3261.Google Scholar
  18. 18.
    J. L. Olsen and L. Rinderer, Nature 173 (1954) 682.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • J. Bevk
    • 1
  • James P. Harbison
    • 1
  1. 1.Division of Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations