Skip to main content
Log in

The critical stress criterion for gaseous hydrogen embrittlement

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A criterion for susceptibility to hydrogen embrittlement based on the development of a critical hydrostatic stress has been proposed. The hydrostatic stress distribution ahead of plastically strained notches has been described analytically and correlated with measured susceptibility to hydrogen embrittlement. The predictions of the analysis are in good agreement with available experimental data and support the critical stress criterion for hydrogen embrittlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Jolly, M. C. Murphy, A. N. Paterson and D. J. Petty, Presented to CEA Thermal and Nuclear Power Section, Halifax, Nova Scotia (1975).

  2. A. E. Scheutz and W. D. Robertson, Corrosion 13 (1957) 537.

    Google Scholar 

  3. L. W. Vollmer ibid 8 (1952) 236.

    Google Scholar 

  4. R. S. Treseder, International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Based Alloys, Unieux-Firminy, France (1973).

  5. R. J. Walter and W. T. Chandler, Western Metal and Tool Conference and Exposition (1969).

  6. W. B. McPherson and C. E. Cataldo, Materials Engineering Exposition and Congress, Detroit (1962).

  7. M. R. Louthan, “Hydrogen in Metals”, edited by I. M. Bernstein and A. W. Thomson (ASM, Metals Park, Ohio, 1974).

    Google Scholar 

  8. R. A. Oriani and P. H. Josephic, Acta Met. 22 (1974) 1065.

    Google Scholar 

  9. G. G. Hancock and H. H. Johnson, Trans. Met. Soc. AIME 236 (1966) 513.

    Google Scholar 

  10. P. Doig and G. T. Jones, Met. Trans. 8 (1977) 1933.

    Google Scholar 

  11. E. A. Steigerwald, E. W. Schaller and A. R. Troiano, Trans. Met. Soc. AIME 215 (1959) 1048.

    Google Scholar 

  12. A. R. Troiano Trans. ASM 52 (1960) 54.

    Google Scholar 

  13. A. S. Tetelman, “Fracture of Solids” (Wiley, New York, 1962) p. 671.

    Google Scholar 

  14. J. G. Mortlett, H. H. Johnson and A. R. Troiano, J. Iron Steel Inst. 189 (1959) 37.

    Google Scholar 

  15. N. J. Petch, Phil. Mag. 1 (1956) 331.

    Google Scholar 

  16. D. P. Williams and H. G. Nelson, Met. Trans. 1 (1970) 63.

    Google Scholar 

  17. J. D. Frandsen and H. L. Marcus, Scripta Met. 9 (1975) 1089.

    Google Scholar 

  18. J. F. Lessar and W. W. Gerberich, Met. Trans. 7 (1976) 953.

    Google Scholar 

  19. T. R. Wilshaw, C. A. Rau and A. S. Tetelman, Eng. Fract. Mech. 1 (1968) 191.

    Google Scholar 

  20. J. R. Griffiths and D. R. J. Owen, J. Mech. Phys. Solids 19 (1971) 419.

    Google Scholar 

  21. R. O. Ritchie, J. F. Knott and J. R. Rice, ibid 21 (1973) 395.

    Google Scholar 

  22. W. W. Gerberich, Y. T. Chen and C. St. John, Met. Trans. 6 (1975) 1485.

    Google Scholar 

  23. J. R. Rice, Corrosion 32 (1976) 22.

    Google Scholar 

  24. A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon Press, Oxford, 1953).

    Google Scholar 

  25. R. A. Oriani, “Fundamental Aspects of Stress Corrosion Cracking” (N.A.C.E., Houston, USA, 1969).

    Google Scholar 

  26. W. W. Gerberich and Y. T. Chen, Met. Trans. 6 (1975) 271.

    Google Scholar 

  27. R. Hill, “Mathematical Theory of Plasticity” (Clarendon Press, Oxford, 1950).

    Google Scholar 

  28. A. J. Wang, Q. Appl. Mech. 11 (1954) 427.

    Google Scholar 

  29. D. Kalderon, Proc. Inst. Mech. Eng. 186 (1972) 341.

    Google Scholar 

  30. C. S. Kortovich and E. A. Steigerwald, Eng. Fract. Mech. 4 (1972) 637.

    Google Scholar 

  31. C. F. Barth and E. A. Steigerwald, Met. Trans. 1 (1970) 3451.

    Google Scholar 

  32. C. E. Inglis, Trans. Inst. Naval Arch. 55 (1913) 219.

    Google Scholar 

  33. W. K. Wilson, J. Press. Vess. Technol. 96 (1974) 293.

    Google Scholar 

  34. P. McIntyre, “Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys”, Paper F11, Unieux-Firminy, France (1973).

    Google Scholar 

  35. W. G. Clark, Westinghouse Scientific Paper, No. 73-1E7-MSLRA-P3 (1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doig, P., Jones, G.T. The critical stress criterion for gaseous hydrogen embrittlement. J Mater Sci 14, 1440–1446 (1979). https://doi.org/10.1007/BF00549320

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549320

Keywords

Navigation