Skip to main content
Log in

Oxygen self-diffusion in a potassium strontium silicate glass using proton activation analysis

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxygen self-diffusion coefficients were measured in a 20K2O-20SrO-60SiO2 (wt%) glass above and below the glass transition temperature using the single spectrum proton activation analysis of oxygen-18 using the nuclear reaction 18O(p, α)15N. The α-particle spectrum recorded during proton irradiation is used to determine the 18O concentration profile. The self-diffusion coefficients, D, determined for the three diffusion times of about 22 h, 3 1/2 and 7 1/2 days were in good agreement within experimental error, except for the two lowest temperatures of the short-time run possibly because of the shallow depths of diffusion and surface exchange. In the temperature range 600 to 1000 K, D values with the relations, above the glass transition temperature D=7.6×1014 exp(−119 kcal/RT) cm2sec−1, and below the glass transition temperature D=1×10−12 exp(−10 kcal/RT) cm2sec−1, were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Varshneya and A. R. Cooper, J. Amer. Ceram. Soc. 51 (1968) 103.

    Google Scholar 

  2. Idem, ibid 55 (1972) 220.

    Google Scholar 

  3. Idem, ibid 55 (1972) 312.

    Google Scholar 

  4. Idem, ibid 55 (1972) 418.

    Google Scholar 

  5. G. Amsel, J. P. Nadai, E. D'artemare, D. David, E. Girard and J. Moulin, Nucl. Instr. Methods 92 (1971) 481.

    Google Scholar 

  6. G. Amsel, G. Beranger, B. Degolas and P. Lacombe, J. Appl. Phys. 39 (1968) 2246.

    Google Scholar 

  7. G. Amsel and D. Samuel, Anal. Chem. 39 (1967) 1639.

    Google Scholar 

  8. A. Choudhary, D. W. Palmer, G. Amsel, H. Curien and P. Baruch, Solid State Commun. 3 (1965) 119.

    Google Scholar 

  9. D. W. Palmer, Nucl. Instr. Methods 38 (1965) 187.

    Google Scholar 

  10. R. Robin, A. R. Cooper and A. H. Heuer, J. Appl. Phys. 44 (1973) 3770.

    Google Scholar 

  11. W. W. Lindstrom and A. H. Heuer, Nucl. Instr. Methods 116 (1974) 145.

    Google Scholar 

  12. R. D. Evans, “The Atomic Nucleus” (McGraw-Hill, New York, 1965).

    Google Scholar 

  13. W. Kaplan, “Operational Methods for Linear Systems” (Addison Wesley, London, 1962).

    Google Scholar 

  14. C. F. Williamson, J. P. Boujot and J. Picard, Centre d'Etudes Nucleaires de Saclay, Report No. CEA-R-3042 (1966).

  15. P. R. Bevington, “Data Reduction and Error Analysis for the Physical Sciences” (McGraw-Hill, New York, 1969).

    Google Scholar 

  16. J. Crank, “Mathematics of Diffusion” (Oxford, London, 1956) p. 34.

    Google Scholar 

  17. B. S. Rawal, M. S. Thesis, Case Western Reserve University, Cleveland, Ohio (1974).

    Google Scholar 

  18. B. S. Rawal and A. R. Cooper, J. Non-Cryst. Solids (to be submitted).

  19. R. Haul and G. Dumbgen, Z. Electrochem. 66 (1962) 636.

    Google Scholar 

  20. E. W. Sucov, J. Amer. Ceram. Soc. 46 (1963) 14.

    Google Scholar 

  21. E. L. Williams, ibid 48 (1965) 190.

    Google Scholar 

  22. F. J. Norton, Nature 191 (1961) 701.

    Google Scholar 

  23. R. M. Barrer, “Diffusion in and Through Solids” (Cambridge University Press, New York, 1952) p. 126.

    Google Scholar 

  24. W. D. Kingery and J. A. Lecron, Phys. Chem. Glasses 1 (1960) 87.

    Google Scholar 

  25. W. C. Hagel and J. D. Mackenzie, ibid 5 (1964) 113.

    Google Scholar 

  26. H. A. Schaeffer and H. J. Oel, Glastech. Ber. 42 (1969) 493.

    Google Scholar 

  27. R. H. Doremus, “Glass Science” (Wiley, New York, 1973) Ch. 8.

    Google Scholar 

  28. Idem, J. Non-Cryst. Solids 25 (1977) 261.

    Google Scholar 

  29. R. L. Meek, J. Amer. Ceram. Soc. 56 (1973) 341.

    Google Scholar 

  30. H. Ueda and Y. Oishi, Semi Annual Report of the Asahi Glass Foundation for the Contribution to Industrial Technology 16 (1970) 201.

    Google Scholar 

  31. R. Terai and Y. Oishi, Glastech. Ber. 50 (1977) 68.

    Google Scholar 

  32. G. Adams and J. H. Gibbs, J. Chem. Phys. 43 (1965) 139.

    Google Scholar 

  33. M. L. Williams, R. F. Landel and J. D. Ferry, J. Amer. Chem. Soc. 77 (1965) 3701.

    Google Scholar 

  34. M. H. Cohen and D. Turnbull, J. Chem. Phys. 31 (1959) 1164.

    Google Scholar 

  35. P. B. Macedo and T. A. Litovitz, ibid 42 (1965) 245.

    Google Scholar 

  36. R. W. Lee, ibid 38 (1963) 448.

    Google Scholar 

  37. R. W. Lee, R. C. Frank and D. E. Swets, ibid 36 (1962) 1062.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawal, B.S., Cooper, A.R. Oxygen self-diffusion in a potassium strontium silicate glass using proton activation analysis. J Mater Sci 14, 1425–1432 (1979). https://doi.org/10.1007/BF00549318

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549318

Keywords

Navigation