Skip to main content
Log in

A molecular theory of the fracture toughness of low molecular weight polymers

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent experiments by Robertson show that the fracture toughness G IC of glassy polystyrene PS does not decrease to the ideal brittle value 2γ (where γ is the surface energy for PS) at molecular weights M w below M c the entanglement molecular weight. Instead G IC is more than an order of magnitude above 2γ at M c and decreases slowly below M c. It is postulated that a small craze exists at the crack tip in such low molecular weight glassy polymers. However, since entanglements do not occur single molecules must span this craze; if they do not the craze becomes unstable and the crack advances. Under these conditions a critical craze surface displacement exists and G C can be computed to be G IC=S c(λ−1) 〈R 21/2, where λ and S c are the craze fibril extension ratio and craze surface drawing stress observed in high molecular weight crazes (both quantities should be only weak functions of M w) and 〈R 21/2 is the root mean square end-to-end distance of the PS molecule in the glass from neutron scattering measurements. The fracture toughness is predicted to decrease as M 1/2w ; this prediction and the absolute magnitude of G IC are in excellent agreement with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. T. Hahn, M. F. Kanninen and A. R. Rosenfield, Ann. Rev. Mater. Sci. 2 (1972) 381.

    Google Scholar 

  2. G. I. Barenblatt, Adv. Appl. Mech. 7 (1962) 55.

    Google Scholar 

  3. A. A. Griffith, Phil. Trans. Roy. Soc. A221 (1920) 163.

    Google Scholar 

  4. G. T. Hahn and A. R. Rosenfield, in “Applications Related Phenomena in Titanium Alloys”, ASTM STP 432 (American Society for Testing and Materials, Philadelphia, 1968) p. 5.

    Google Scholar 

  5. Idem, Met. Trans. 6A (1975) 653.

    Google Scholar 

  6. R. Thomson, J. Mater. Sci. 13 (1978) 128.

    Google Scholar 

  7. L. C. Cessna Jr and S. S. Sternstein, Polymer Letters 3 (1965) 825.

    Google Scholar 

  8. Idem, in “Fundamental Phenomena in the Materials Sciences”, edited by L. J. Bovis, J. J. Duga and J. J. Gilman, Vol. 4 (Plenum Press, New York, 1967) p. 45.

    Google Scholar 

  9. H. R. Brown and I. M. Ward, Polymer 14 (1973) 469.

    Google Scholar 

  10. G. P. Morgan and I. M. Ward, ibid 18 (1977) 87.

    Google Scholar 

  11. R. A. W. Fraser and I. M. Ward, ibid 19 (1978) 220.

    Google Scholar 

  12. N. J. Mills and N. Walker, ibid 17 (1976) 439.

    Google Scholar 

  13. J. G. Williams and G. P. Marshall, Proc. Roy. Soc. Lond. A342 (1975) 55.

    Google Scholar 

  14. E. H. Andrews and L. Bevan, Polymer 13 (1972) 337.

    Google Scholar 

  15. I. N. Sneddon, “Fourier Transforms” (McGraw Hill, New York, 1951) pp. 395–430.

    Google Scholar 

  16. A. C. Knight, J. Polymer Sci. A3 (1965) 1845.

    Google Scholar 

  17. E. J. Kramer, H. G. Krenz and D. G. Ast, J. Polymer Sci. Polymer Phys. 16 (1978) 349.

    Google Scholar 

  18. E. J. Kramer, in “Developments in Polymer Fracture”, edited by E. H. Andrews (Applied Sciences Publishers, London, 1979).

    Google Scholar 

  19. B. D. Lauterwasser and E. J. Kramer, Phil. Mag. (in press).

  20. R. S. Porter and J. F. Johnson, Chem. Rev. 66 (1966) 1.

    Google Scholar 

  21. P. G. De Gennes, J. Chem. Phys. 55 (1971) 572.

    Google Scholar 

  22. Idem, Macromol. 9 (1976) 587.

    Google Scholar 

  23. A. N. Gent and A. G. Thomas, J. Polymer Sci. A2 10 (1972) 571.

    Google Scholar 

  24. R. P. Kusy and D. T. Turner, Polymer 15 (1974) 394.

    Google Scholar 

  25. R. E. Robertson, in “ACS Symposium on Toughness and Brittleness of Plastics”, September 1974, edited by R. D. Denin and A. D. Crugnola, Adv. in Chemistry Series no. 154, (ACS, New York, 1976) p. 89.

    Google Scholar 

  26. J. F. Fellers and B. F. Kee, J. Appl. Polymer Sci. 18 (1974) 2355.

    Google Scholar 

  27. T. E. Brady and G. S. Y. Yeh, J. Mater. Sci. 8 (1973) 1083.

    Google Scholar 

  28. S. Wellinghoff and E. Baer, J. Macromol. Sci. Phys. B11 (1975) 367.

    Google Scholar 

  29. D. L. G. Lainchbury and M. Bevis, J. Mater. Sci. 11 (1976) 2222.

    Google Scholar 

  30. R. N. Haward, H. E. Daniels and L. R. G. Treloar, J. Polymer Sci. Polymer Phys. 16 (1978) 1169.

    Google Scholar 

  31. R. G. Kirste, W. A. Kruse and J. Schelten, Macromol. Chem. 162 (1972) 199.

    Google Scholar 

  32. H. Benoit, D. Decker, J. S. Higgins, C. Picot, J. P. Cotton, B. Farnoux, G. Jannick and R. Ober, Nature Phys. Sci. 245 (1973) 13.

    Google Scholar 

  33. G. D. Wignall, D. G. H. Ballard and J. Schelten, J. Macromol. Sci. Phys. B12 (1976) 75.

    Google Scholar 

  34. D. S. Dugdale, J. Mech. Solids 8 (1960) 100.

    Google Scholar 

  35. J. N. Goodier and F. A. Field, “Proceedings of the International Conference on Fracture of Solids”, edited by D. C. Drucker and J. J. Gilman, Met. Soc. Conferences, Vol. 20 (Interscience, New York, 1963) p. 103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, E.J. A molecular theory of the fracture toughness of low molecular weight polymers. J Mater Sci 14, 1381–1388 (1979). https://doi.org/10.1007/BF00549312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549312

Keywords

Navigation