Journal of Materials Science

, Volume 14, Issue 6, pp 1375–1380 | Cite as

Growth pressure-temperature region of cubic BN in the system BN-Mg

  • Tadashi Endo
  • Osamu Fukunaga
  • Minoru Iwata


The growth pressure-temperature region of cBN in the system BN-Mg was determined under the conditions up to 8 GPa and 2300° C. Hexagonal BN with different oxygen contents (1.9 wt % for R-type and 7.9 wt % for N1-type) was used as a starting material. The lower temperature limit of the cBN region obtained from the R-type is about 1380° C under pressures of 6 to 8 GPa. This limit can be compared with the eutectic point in the system hBN-Mg3B2N4. The data suggest that cBN crystals grow through the dissolution and precipitation process from a eutectic liquid. The cBN region obtained from the N1-type is located at higher temperatures than that of the R-type, the lower limit of which is reached at about 1700° C at 6 GPa. MgO and/or Mg3 (BO3)2 are formed as by-products in such a system. The finding implies that Mg3B2N4, a solvent of BN, reacts with oxide impurities (especially B2O3) by the following reaction; Mg3B2N4+3/2O2=3MgO+2BN+N2 or Mg3B2N4+3O2=Mg3 (BO3)2+2N2. It is deduced that the cBN growth region shifts towards higher temperatures depending on the effect of oxygen.


Oxide Oxygen Polymer Precipitation Hexagonal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Kudaka, H. Konno and T. Matoba, Kogyo-Kagaku Zasshi (J. Chem. Soc. Japan, Ind. Chem. Section) 69 (1966) 365.Google Scholar
  2. 2.
    M. Ushio, H. Saito and S. Nagano, ibid 74 (1971) 598.Google Scholar
  3. 3.
    O. Fukunaga, T. Sato, M. Iwata and H. Hiraoka, Proceedings of the 4th International Conference on High Pressure, Kyoto (1974) p. 454.Google Scholar
  4. 4.
    T. Endo, O. Fukunaga and M. Iwata, J. Mater. Sci. (to be published).Google Scholar
  5. 5.
    H. T. Hall, Rev. Sci. Instrum. 31 (1960) 125.Google Scholar
  6. 6.
    O. Fukunaga, M. Akaishi, T. Endo and S. Yamaoka, Atsu-ryoku Gizitsu (Pressure Engineering) 14 (1976) 35.Google Scholar
  7. 7.
    J. Thomas. Jun., N. E. Weston and T. E. O'conner, J. Amer. Chem. Soc. 84 (1963) 4619.Google Scholar
  8. 8.
    G. C. Kennedy and R. C. Newton, “Solids under Pressure”, edited by W. Paul and D. M. Warschauer (McGraw-Hill, New York, 1963) p. 173.Google Scholar
  9. 9.
    E. A. Kraut and G. C. Kennedy, Phys. Rev. 151 (1966) 668.Google Scholar
  10. 10.
    P. W. Bridgeman, Proc. Amer. Acad. Arts Sci. 76 (1948) 55.Google Scholar
  11. 11.
    R. H. Wentorf Jr, J. Chem. Phys. 34 (1961) 809.Google Scholar
  12. 12.
    R. C. Devries and J. F. Fleischer, J. Crystal Growth 13/14 (1972) 88.Google Scholar
  13. 13.
    N. E. Filonenko, V. I. Iranov, L. I. Fel'dgun, M. I. Sokhor and L. F. Vereshchagin, Dokl. Akad. Nauk. SSSR 175 (1967) 1266.Google Scholar
  14. 14.
    L. Markovskii, Yu. D. Kondrashev and G. Kaputovskaya, Zh. Obshch. Khim. 25 (1955) 433; J. Gen. Chem. USSR 25 (1955) 409.Google Scholar
  15. 15.
    R. S. Bradley, D. C. Munro and M. Whitfield, J. Inorg. Nucl. Chem. 28 (1966) 1803.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • Tadashi Endo
    • 1
  • Osamu Fukunaga
    • 1
  • Minoru Iwata
    • 1
  1. 1.National Institute for Researches in Inorganic MaterialsIbarakiJapan

Personalised recommendations