Skip to main content
Log in

Cracking and toughening of concrete and polymer-concrete dispersed with short steel wires

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A fibre-strengthened brittle solid can crack and fracture in a number of ways and simple models can be used to describe quantitatively the fracture processes. This paper discusses some of these models and compares experimental measurements of cracking stress and toughness for two brittle fibrous composites with the theoretical predictions. The two brittle matrices are concrete and concrete impregnated with polymethylmethacrylate reinforced by discontinuous (short) high strength steel wires. It involved extracting a single steel wire from each brittle matrix to evaluate the debonding stress and pull-out stress as a function of fibre embedded length. These key material parameters and the energetics of cracking determined in three-point flexural experiments, together with the cracking and toughening equations are then used to characterize the fracture behaviour of fibrestrengthened concrete and polymer-concrete composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aveston, G. A. Cooper and A. Kelly, “The Properties of Fibre Composites” (IPC Science and Technology Press, 1971) pp. 15–24.

  2. A. H. Cottrell, Proc. Roy. Soc. A282 (1964) 2.

    Google Scholar 

  3. A. Kelly, ibid. A282 (1964) 63.

    Google Scholar 

  4. Idem, ibid. A319 (1970) 95.

    Google Scholar 

  5. P. Hing and G. W. Groves, J. Mater. Sci. 7 (1972) 427.

    Google Scholar 

  6. J. L. Helfet and B. Harris, ibid. 7 (1972) 494.

    Google Scholar 

  7. J. O. Outwater and M. C. Murphy, 26th Annual Conference on Reinforced Plastics and Composites, Division of Society of Plastics Industries (1969).

  8. F. F. Lange, Phil Mag. 22 (1970) 983.

    Google Scholar 

  9. A. G. Evans, ibid. 27 (1972) 1327.

    Google Scholar 

  10. J. Aveston and A. Kelly, J. Mater. Sci. 8 (1973) 352.

    Google Scholar 

  11. A. Takaku and R. G. C. Arridge, J. Phys. D: Appl. Phys. 6 (1973) 2038.

    Google Scholar 

  12. A. Kelly and C. Zweben, J. Mater. Sci. 11 (1976) 582.

    Google Scholar 

  13. D. J. Pinchin, Ph.D. Thesis, University of Cambridge (1977).

  14. N. Hadjis and M. R. Piggott, J. Mater. Sci. 12 (1977) 358.

    Google Scholar 

  15. J. Aveston, R. A. Mercer and J. M. Sillwood, National Physical Laboratory Report SI No. 90/11/ 98 (1975).

  16. J. Aveston, R. A. Mercer and J. M. Sillwood, “Composites — Standards, Testing and Design” (IPC Science and Technology Press, 1974) pp. 93–103.

  17. J. Morton and G. W. Groves, J. Mater Sci. 11 (1976) 617.

    Google Scholar 

  18. W. W. Gerberich, Ph.D. Thesis, Lawrence Radiation Laboratory, University of California, Berkeley (1971).

    Google Scholar 

  19. L. B. Greszczuk, American Society for Testing and Materials Special Technical Publication 452 (1969) p. 49.

    Google Scholar 

  20. J. C. Aleszka and P. W. R. Beaumont, UCLA Report No. UCLA-ENG-7396 (1973) Department of Engineering and Applied Sciences.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaumont, P.W.R., Aleszka, J.C. Cracking and toughening of concrete and polymer-concrete dispersed with short steel wires. J Mater Sci 13, 1749–1760 (1978). https://doi.org/10.1007/BF00548738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00548738

Keywords

Navigation