Skip to main content
Log in

Ostwald ripening and its application to precipitates and colloids in ionic crystals and glasses

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The theory of Ostwald ripening developed by Lifshitz and Slezov and by Wagner (LSW theory) has been used for many years to interpret ageing experiments in metallic alloys. The theory is reviewed, and extended in some respects which are suggested by using it to interpret experiments on the ripening of precipitates and colloids in non-metallic systems. A detailed treatment is given for the case where the diffusion of solute species down dislocations or grain boundaries controls the ripening rate and the particle size distribution. The assumptions and approximations used in the theory are examined, and it is shown that an inhomogeneous spatial distribution of particles can lead to several independently ripening systems within the same sample if groups of particles are separated by distances large compared with the interparticle separation within each group. The theory is then used to interpret observed size distributions of precipitates in alkali halides and glass. Some of the data do not fit into the framework of the LSW theory and it is suggested that this is the result of the extremely inhomogeneous spatial distributions of particles found in electron microscope studies of these systems

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. Frank, Proc. Roy. Soc. A201 (1950) 586.

    Google Scholar 

  2. C. Zener, J. Appl. Phys. 20 (1949) 950.

    Google Scholar 

  3. C. Wert, ibid. 20 (1949) 943.

    Google Scholar 

  4. C. Wert and C. Zener, Phys. Rev. 76 (1949) 1169.

    Google Scholar 

  5. Idem, J. Appl. Phys, 21 (1950) 5.

    Google Scholar 

  6. F. S. Ham, J. Phys. Chem. Solids 6 (1958) 335.

    Google Scholar 

  7. Idem, J. Appl. Phys. 30 (1959) 915.

    Google Scholar 

  8. J. W. Christian, “The Theory of Transformations in Metals and Alloys” 2nd edn (Pergamon Press, Oxford, 1975).

    Google Scholar 

  9. G. W. Greenwood, Acta Met. 4 (1956) 243.

    Google Scholar 

  10. I. M. Lifshitz and V. V. Slezov, J. Exptl. Theoret. Phys. (USSR) 35 (1958) 479. (English Translation, Soviet Phys JETP 35 (1959) 311).

    Google Scholar 

  11. Idem, Fiz Tverd Tela 1 (1959) 1401 (English Translation, Sov. Phys. Sol. Stat. 1 (1959) 1285).

    Google Scholar 

  12. Idem, J. Phys. Chem. Solids 19 (1961) 35.

    Google Scholar 

  13. C. Wagner, Z Elektrochem 65 (1961) 581.

    Google Scholar 

  14. A. J. Ardell, Acta Met 20 (1972) 61.

    Google Scholar 

  15. W. J. Dunning, “Particle Growth in Suspensions,” edited by A. L. Smith (Academic Press, London, 1973) p. 3.

    Google Scholar 

  16. M. Kahlweit, Ber. Bunsen Gesell für Phys. Chemie. 78 (1974) 997.

    Google Scholar 

  17. Idem, Adv. Colloid and Interface Sci. 5 (1975) 1.

    Google Scholar 

  18. Idem, Scripta Met. 10 (1976) 601.

    Google Scholar 

  19. Idem, “Physical Chemistry: an Advanced Treatise”, Vol. 10, Edited by H. Eyring, D. Henderson and W. Jost (Academic Press, New York, 1970) Chapter 11.

    Google Scholar 

  20. G. W. Greenwood, “The Mechanism of Phase Transformations in Crystalline Solids”, Institute of Metals Monograph No. 33 (1969) p. 103.

  21. D. J. Chellman and A. J. Ardell, Acta Met, 22 (1974) 577.

    Google Scholar 

  22. A. F. Smith, ibid 15 (1967) 1867.

    Google Scholar 

  23. T. Mukherjee and C. M. Sellars, “The Mechanism of Phase Transformations in Crystalline Solids,” Institute of Metals Monograph, No. 33 (1969) p.122.

  24. K. K. Shvarts, Yu. A. Ekmanis, V. V. Udod, A. F. Lyushina, Yu. E. Tiliks and R. A. Kan, Fiz. Tver. Tela 12 (1970) 879, (English Translation Sov. Phys. Sol. Stat. 12 (1970) 679).

    Google Scholar 

  25. U. Kreibig, J. Phys. F 4 (1974) 999.

    Google Scholar 

  26. S. C. Jain and N. D. Arora, J. Phys. Chem. Solids. 35 (1974) 1231.

    Google Scholar 

  27. D. L. Kirk, A. R. Kahn and P. L. Pratt, J. Phys. D 8 (1975) 2013.

    Google Scholar 

  28. G. Chassagne, Thesis, Université Claude Bernard, Villeurbanne, France (1976).

    Google Scholar 

  29. G. Chassagne, D. Durand, J. Serughetti and L. W. Hobbs, Phys. Stat. Sol. (a) 40 (1977) 629.

    Google Scholar 

  30. Idem, ibid 41 (1977) 183.

    Google Scholar 

  31. J. M. Calleja and F. Agulló-López, ibid 25 (1974) 473.

    Google Scholar 

  32. Idem, Phys. Lett. 53A (1975) 317.

    Google Scholar 

  33. A. D. Brailsford and H. B. Aaron, J. Appl. Phys. 40 (1969) 1702.

    Google Scholar 

  34. M. V. Speight, Acta Met 16 (1968) 133.

    Google Scholar 

  35. R. V. Day and J. Barford, Nature 217 (1968) 1145.

    Google Scholar 

  36. R. Bullough and R. C. Newman, Reports on Progress in Phys. 33 (1970) 101.

    Google Scholar 

  37. H. I. Aaronson, H. B. Aaron and K. R. Kinsman, Metallography 4 (1971) 1.

    Google Scholar 

  38. D. Durand, G. Chassagne and J. Serughetti, Phys. Stat. Sol. (a) 12 (1972) 389.

    Google Scholar 

  39. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. London A62 (1949) 49.

    Google Scholar 

  40. H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” 2nd edn (Oxford University Press. 1959) p. 189.

  41. B. K. Chakraverty, J. Phys. Chem. Sol. 28 (1967) 2401.

    Google Scholar 

  42. R. D. Vengrenovitch and V. I. Psarev, “Dispersed Metal Films” (in Russian) (Inst. Fiz. AN Ukr SSR, Kiev, 1972) p. 62.

    Google Scholar 

  43. R. D. Vengrenovitch, Izv. Vuz. Fiz. 3 (1974) 118 (English Translation, Sov. Phys. J. (USA) 3 (1974) 387).

    Google Scholar 

  44. R. A. Oriani, Acta Met. 12 (1964) 1399.

    Google Scholar 

  45. C-Y. Li, J. M. Blakely and A. H. Feingold, ibid, 14 (1966) 1397.

    Google Scholar 

  46. A. B. Scott, Phil. Mag. 45 (1954) 610.

    Google Scholar 

  47. J. G. Fripiat, K. T. Chow, M. Boudart, J. B. Diamond and K. H. Johnson, J. Mol. Catalysis, 1 (1975/76) 59.

    Google Scholar 

  48. R. F. Marshall, R. J. Blint and A. B. Kunz, Sol. Stat. Comm. 18 (1976) 731.

    Google Scholar 

  49. H. B. Aaron, D. Fainstein and G. R. Kotler, J. Appl. Phys. 41 (1970) 4404.

    Google Scholar 

  50. S. C. Jain and A. E. Hughes, Proc. Roy. Soc. A360 (1978) 47.

    Google Scholar 

  51. A. E. Hughes and S. C. Jain, Phys. Lett. 58A (1976) 61.

    Google Scholar 

  52. L. W. Hobbs, A. E. Hughes and G. Chassagne, Nature 252 (1974) 383.

    Google Scholar 

  53. S. C. Jain and G. D. Sootha, Phys. Rev. 171 (1968) 1075.

    Google Scholar 

  54. S. C. Jain and V. K. Jain, ibid. 181 (1969) 1312.

    Google Scholar 

  55. M. Smoluchowski, Physik. Z 17 (1916) 557, 585.

    Google Scholar 

  56. Idem, Z. Physik. Chem. 92 (1917) 129.

    Google Scholar 

  57. S. Chandrasekar, Rev. Mod. Phys. 15 (1943) 1.

    Google Scholar 

  58. G. M. Hidy, J. Colloid Sci. 20 (1965) 123.

    Google Scholar 

  59. D. L. Swift and S. K. Friedlander, ibid 19 (1964) 621.

    Google Scholar 

  60. R. L. Rowell and A. B. Levit, J. Colloid Interface Sci. 34 (1970) 585.

    Google Scholar 

  61. Y. E. Geguzin and M. A. Krivoglaz, “Migration of Macroscopic Inclusions in Solids” (Consultants Bureau, New York and London, 1973).

    Google Scholar 

  62. H. Jeffreys and B. S. Jeffreys, “Methods of Mathematical Physics,” 3rd edn (Cambridge University Press, 1966).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S.C., Hughes, A.E. Ostwald ripening and its application to precipitates and colloids in ionic crystals and glasses. J Mater Sci 13, 1611–1631 (1978). https://doi.org/10.1007/BF00548725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00548725

Keywords

Navigation