Advertisement

Theoretica chimica acta

, Volume 65, Issue 4, pp 303–310 | Cite as

Momentum density and molecular geometry. Bent BH 2 and linear BH 2 +

  • Toshikatsu Koga
  • Hisayoshi Kobayashi
Original Investigations

Abstract

Based on a special form of the molecular virial theorem, the recently proposed method of momentum density for interatomic interactions is here applied to the problem of molecular geometry. Two molecules BH 2 and BH 2 + , which have the same nuclear framework but favor respectively bent and linear conformations, are comparatively studied. Using an approximate Hartree-Fock momentum density, the total molecular energy (including the nuclear repulsion) is partitioned into orbital components, and a geometry correlation diagram is derived. An atom-bond partitioning of the total energy is also examined based on the one- and two-center decomposition of the momentum density.

Key words

Momentum density BH2and BH2+ geometries of ∼ virial theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koga, T.: Theoret. Chim. Acta (Berl.) 58, 173 (1981)Google Scholar
  2. 2.
    Koga, T., Morita, M.: Theoret. Chim. Acta (Berl.) 59, 639 (1981)Google Scholar
  3. 3.
    Koga, T., Miyahara, T., Morita, M.: Theoret. Chim. Acta (Berl.) 63, 377 (1983)Google Scholar
  4. 4.
    Koga, T., Morita, M.: Theoret. Chim. Acta (Berl.) 61, 73 (1982)Google Scholar
  5. 5.
    Koga, T., Morita, M.: Theoret. Chim. Acta (Berl.) 59, 423 (1981)Google Scholar
  6. 6.
    Koga, T., Sugawara, M., Morita, M.: Theoret. Chim. Acta (Berl.) 61, 87 (1982)Google Scholar
  7. 7.
    Koga, T., Shimokawa, K., Inagawa, I., Morita, M.: Theoret. Chim. Acta (Berl.) 62, 39 (1982)Google Scholar
  8. 8.
    Koga, T.: Int. J. Quantum Chem. 25, 347 (1984)Google Scholar
  9. 9.
    Nelander, B.: J. Chem. Phys. 51, 469 (1969)Google Scholar
  10. 10.
    Srebrenik, S., Messer, R.: J. Chem. Phys. 63, 2768 (1975)Google Scholar
  11. 11.
    Epstein, S. T.: The variation method in quantum chemistry, pp. 104–115. New York: Academic 1974Google Scholar
  12. 12.
    Takahata, Y., Parr, R. G.: Chem. Phys. Lett. 4, 109 (1969)Google Scholar
  13. 13.
    Binkley, J. S., Whiteside, R. A., Krishnan, R., Seeger, R., DeFrees, D. J., Schlegel, H. B., Topiol, S., Kahn, L. R., Pople, J. A.: QCPE 13, 406 (1981)Google Scholar
  14. 14.
    Walsh, A. D.: J. Chem. Soc. 2260 (1953)Google Scholar
  15. 15.
    Nakatsuji, H., Koga, T., in: The force concept in chemistry, pp. 137–217, Deb, B. M., ed. New York: Van Nostrand Reinhold 1981Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Toshikatsu Koga
    • 1
  • Hisayoshi Kobayashi
    • 2
  1. 1.Department of Applied Chemistry and Department of Applied Science for EnergyMuroran Institute of TechnologyHokkaidoJapan
  2. 2.Faculty of Living ScienceKyoto Prefectural UniversityKyotoJapan

Personalised recommendations