Journal of Materials Science

, Volume 12, Issue 4, pp 739–742 | Cite as

Auger spectroscopy of grain boundaries in calcium-doped sodium beta-alumina

  • W. N. Unertl
  • L. C. De Jonghe
  • Y. Y. Tu


Air- and vacuum-fractured samples of calcium-doped beta-alumina have been examined using Auger electron spectroscopy. The calcium concentrations at grain boundaries were found to be enhanced over the bulk value by about a factor of 10. Excess sodium was observed on the fracture surface of air fractured electrolytes, and was absent for samples fractured in ultra-high vacuum. Temperature-dependent features in the secondary electron spectrum and the effects of surface charging and radiation damage by the incident electron beam were also observed.


Electron Beam Fracture Surface Surface Charge Auger Calcium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Sudworth and I. Dugdale, “Proceedings of the 6th International Symposium on Power Sources”, Vol. 2, edited by D. H. Collins (Pergamon Press, New York, 1970) p. 547.Google Scholar
  2. 2.
    Y. F. Yao and J. T. Kummer, J. Inorg. Nucl. Chem. 29 (1967) 2453.Google Scholar
  3. 3.
    M. S. Whittingham and R. A. Huggins, Proceedings of the 5th Materials Research Symposium, Solid State Chemistry, NBS Special Publ. 364 (1972) p. 139.Google Scholar
  4. 4.
    Y. Lazennec, C. Lasne and P. Margotin, J. Electrochem. Soc. 122 (1975) 734.Google Scholar
  5. 5.
    L. C. De Jonghe and A. Buechele, Cornell Materials Science Center Report no. 2428 (April 1975).Google Scholar
  6. 6.
    J. M. Baker and J. M. Blakely, Surface Sci. 32 (1972) 45.Google Scholar
  7. 7.
    C. C. Chang, in “Chacterization of Solid Surfaces”, edited by P. F. Kane and G. B. Larrabee (Plenum Press, New York 1974) p. 509.Google Scholar
  8. 8.
    N. A. Gjostein and N. G. Chavka, J. Testing Evaluation 1 (1973) 183.Google Scholar
  9. 9.
    C. T. H. Stoddart and E. D. Hondros, Trans. J. Brit. Ceram. Soc. 73 (1974) 61.Google Scholar
  10. 10.
    P. W. Palmberg, G. E. Rich, R. E. Weber and N. C. MacDonald, “Handbook of Auger Electron Spectroscopy”, (Physical Electronics Industries, Inc, Edina, MN, 1972).Google Scholar
  11. 11.
    C. J. Powell, Surface Sci. 44 (1974) 29.Google Scholar
  12. 12.
    K. Kanaya, K. Hojou, K. Koga and K. Toki, Jap. J. Appl. Phys. 12 (1973) 1297.Google Scholar
  13. 13.
    G. E. Becker and H. D. Hagstrum, J. Vac. Sci. Technol. 11 (1974) 284.Google Scholar
  14. 14.
    L. McDonnell, B. D. Powell and D. P. Wood Ruff, Surface Sci. 40 (1973) 669.Google Scholar
  15. 15.
    W. N. Unertl, unpublished data.Google Scholar
  16. 16.
    P. A. Lee and J. B. Pendry, Phys. Rev. B 11 (1975) 2795.Google Scholar
  17. 17.
    J. B. Pendry, “Low Energy Electron Diffraction” (Academic Press, London, 1974).Google Scholar
  18. 18.
    Idem, J. Phys. C 8 (1975) 2413.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1977

Authors and Affiliations

  • W. N. Unertl
    • 1
  • L. C. De Jonghe
    • 1
  • Y. Y. Tu
    • 1
  1. 1.Department of Materials Science and EngineeringCornell UniversityIthacaUSA

Personalised recommendations