Advertisement

Theoretica chimica acta

, Volume 46, Issue 2, pp 117–127 | Cite as

Theoretical investigation of structure and stability of oligomers of LiH, NaH, LiF, and NaF

  • Martin Rupp
  • Reinhart Ahlrichs
Original Investigations

Abstract

The molecules LinHn, NanHn, LinFn, n=1,..., 4, and NaF and Na2F2 are investigated by means of extended basis set SCF and CEPA-PNO computations. In analogy to the D2h structure of dimers, it is found that trimers have a planar cyclic D3h equilibrium geometry. For the tetramer of LiH and NaH, the D4h structure has about the same energy as the 3-dimensional Td structure, whereas the latter is definitely favoured for Li4F4. Correlation effects are investigated for the oligomerization of LiH and the dimerization of LiF. The effect of electron correlation on corresponding ΔE turns out to be small (<4 kJ/mol), except for the case that the Td tetramer is involved which has a rather large correlation energy.

Key words

Oligomers of LiH, NaH, LiF, NaF Correlation effect on ΔE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tyndall, J. R., Companion, A. L.: J. Chem. Phys. 52, 2036 (1970)Google Scholar
  2. 2.
    Kollman, P. A., Bender, C. F., Rothenberg, S.: J. Am. Chem. Soc. 94, 8016 (1972)Google Scholar
  3. 3.
    Ahlrichs, R.: Theoret. Chim. Acta (Berl.) 35, 59 (1974)Google Scholar
  4. 4.
    Dill, J. D., Schleyer, P. v. R., Binkley, J. S., Pople, J. A.: J. Am. Chem. Soc. (in press)Google Scholar
  5. 5.
    Baskin, C. P., Bender, C. F., Kollman, P. A.: J. Am. Chem. Soc. 95, 5868 (1973)Google Scholar
  6. 6.
    Schoonmaker, R. C., Porter, R. F.: J. Chem. Phys. 30, 283 (1959)Google Scholar
  7. 7.
    Eisenstadt, M., Rothenberg, G. M., Kusch, P.: J. Chem. Phys. 29, 797 (1958)Google Scholar
  8. 8.
    Scheffee, R. S., Margrave, J. L.: J. Chem. Phys. 31, 1682 (1959)Google Scholar
  9. 9.
    Porter, R. F., Schoonmaker, R. C.: J. Chem. Phys. 29, 1070 (1958)Google Scholar
  10. 10.
    Snelson, A.: J. Chem. Phys. 46, 3652 (1967)Google Scholar
  11. 11.
    Akishin, P. A., Rambidi, N. G.: Z. Phys. Chem. (Leipzig) 213, 111 (1960)Google Scholar
  12. 12.
    Milne, T. A., Cubiciotti, D.: J. Chem. Phys. 29, 846 (1958); J. Chem. Phys. 30, 1625 (1959)Google Scholar
  13. 13.
    Welch, D. O., Lazareth, O. W., Dienes, G. J.: J. Chem. Phys. 64, 835 (1976)Google Scholar
  14. 14.
    Meyer, W.: Intern. J. Quantum Chem. S5, 341 (1971); Meyer, W.: J. Chem. Phys. 58, 1017 (1973)Google Scholar
  15. 15.
    Ahlrichs, R., Driessler, F., Kutzelnigg, W., Lischka, H., Staemmler, V.: J. Chem. Phys. 62, 1235 (1975)Google Scholar
  16. 16.
    Keil, F., Ahlrichs, R.: J. Am. Chem. Soc. 98, 4787 (1976)Google Scholar
  17. 17.
    Driessler, F., Ahlrichs, R.: Chem. Phys. Letters 23, 571 (1973)Google Scholar
  18. 18.
    Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965); Huzinaga, S.: Approximate atomic functions I, II, Technical Report, Division of Theoretical Chemistry, University of Alberta (1971)Google Scholar
  19. 19.
    Herzberg, G.: Spectra of diatomic molecules. Princeton, N.J.: Van Nostrand 1955Google Scholar
  20. 20.
    Ahlrichs, R., Keil, F.: Chem. Phys. 8, 384 (1975)Google Scholar
  21. 21.
    Veazey, S. E., Gordy, W.: Phys. Rev. A183, 1303 (1965)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Martin Rupp
    • 1
  • Reinhart Ahlrichs
    • 1
  1. 1.Theoretische ChemieInstitut für Physikalische Chemie und Elektrochemie der Universität KarlsruheKarlsruheFederal Republic of Germany

Personalised recommendations