Theoretica chimica acta

, Volume 44, Issue 1, pp 27–43 | Cite as

The convergence of the Rayleigh-Ritz Method in quantum chemistry

II. Investigation of the convergence for special systems of Slater, Gauss and two-electron functions
  • Bruno Klahn
  • Werner A. Bingel
Original Investigations

Abstract

The convergence of the Rayleigh-Ritz Method (RRM) or of CI calculations, respectively, for the non-relativistic electronic Hamiltonian of molecules is investigated using the conventional basis sets of Quantum Chemistry, such as systems of Slater, Gauss and two-electron functions. Conditions for the choice of orbitalexponents with respect to Slater and Gauss orbitals are especially given, such that the convergence is guaranteed. Inter alia, in Theorem 10 a proof of the convergence of the RRM for a Hylleraas basis in s,t,u-coordinates is presented, a question which is still being debated today.

Key words

Convergence of the RRM/CI calculation Complete basis sets Orbital exponents Two-electron functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Slater, J. C.: Phys. Rev. 36, 57 (1930)Google Scholar
  2. 2.
    Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965)Google Scholar
  3. 3.
    Hylleraas, E. A.: Advan. Quantum Chem. 1, 1 (1964)Google Scholar
  4. 4.
    Kinoshita, T.: Phys. Rev. 105, 1490 (1957); 115, 336 (1959)Google Scholar
  5. 5.
    Pekeris, C. L.: Phys. Rev. 112, 1649 (1958); 115, 1216 (1959)Google Scholar
  6. 6.
    Bartlett, J. H., Gibbons, J. J., Dunn, C. C.: Phys. Rev. 47, 679 (1935)Google Scholar
  7. 7.
    Coolidge, A. S., James, H. M.: Phys. Rev. 51, 855 (1937)Google Scholar
  8. 8.
    Kato, T.: Trans. Am. Math. Soc. 70, 212 (1951)Google Scholar
  9. 9.
    Klahn, B., Bingel, W. A.: Theoret. Chim. Acta (Berl.), Part I, preceding paperGoogle Scholar
  10. 10.
    Courant, R., Hubert, D.: Methods of mathematical physics, Vol. I, 1st English edition. New York: Interscience 1953Google Scholar
  11. 11.
    Schönhage, A.: Approximationstheorie. Berlin: de Gruyter 1971Google Scholar
  12. 12.
    Crum, M. M.: J. Lond. Math. Soc. 31, 433 (1956)Google Scholar
  13. 13.
    Klahn, B.: Thesis, Göttingen 1975Google Scholar
  14. 14.
    Klahn, B., Bingel, W. A.: to be published in Intern. J. Quantum Chem.Google Scholar
  15. 15.
    Achieser, N. I., Glasmann, I. M.: Theorie der linearen Operatoren im Hilbert-Raum, 5th Ed. Berlin: Akademie-Verlag 1968Google Scholar
  16. 16.
    Eyring, H., Walter, J., Kimball, G. E.: Quantum chemistry, 11th Ed. New York: Wiley 1963Google Scholar
  17. 17.
    Rellich, F.: Eigenwerttheorie partieller Differentialgleichungen, Vorlesungsmanuskript Teil II. Göttingen 1953Google Scholar
  18. 18.
    Bingel, W. A.: Theoret. Chim. Acta (Berl.) 8, 54 (1967)Google Scholar
  19. 19.
    Kato, T.: Trans. Am. Math. Soc. 70, 195 (1951)Google Scholar
  20. 20.
    Hylleraas, E. A.: Z. Phys. 48, 469 (1928)Google Scholar
  21. 21.
    Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York: McGraw-Hill 1953Google Scholar
  22. 22.
    Hylleraas, E. A.: Z. Phys. 65, 209 (1930)Google Scholar
  23. 23.
    Schwartz, M. H.: Phys. Rev. 103, 110 (1956); 120, 483 (1960); 128, 1146 (1962); 130, 1029 (1963)Google Scholar
  24. 24.
    Knopp, K.: Theory of functions, Part I. New York: Dover Publications 1945Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Bruno Klahn
    • 1
  • Werner A. Bingel
    • 1
  1. 1.Theoretical Chemistry GroupUniversity of GöttingenGöttingenFederal Republic of Germany

Personalised recommendations