Skip to main content
Log in

Chemical applications of topology and group theory 13. Chirality and framework groups [1]

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

Pople has recently introduced the concept of a framework group to specify the full symmetry properties of a molecular structure. Furthermore, Pople has developed powerful algorithms for the use of framework groups to generate all distinguishable skeletons with a given number of sites. This paper studies the systematics of chirality arising from different framework groups. In this connection framework groups can be classified into four different types: linear, planar, achiral, and chiral. Chiral framework groups lead to chiral systems for any ligand partition including that with all ligands equivalent. Linear framework groups are never chiral even for the ligand partition with all ligands different. Planar framework groups are also never chiral since all sites are in the same plane, which therefore remains a symmetry plane for any ligand partition. However, the mirror symmetry of the molecular plane of a planar framework group can be destroyed by a process called polarization; this process can be viewed as the mathematical analogue of complexing a planar aromatic hydrocarbon to a transition metal. The chirality of four-, five-, and six-site framework groups is discussed in terms of the maximum symmetry ligand partitions resulting in removal of all of the symmetry elements corresponding to improper rotations S n (including reflections S 1 and inversions S 2) from achiral and polarized planar framework groups. The Ruch-Schönhofer group theoretical algorithms for the calculation of chiral ligand partitions and pseudoscalar polynomials of lowest degree (“chirality functions”) are adapted for use with these framework groups. Other properties of framework groups relevant to a study of their chirality are also discussed: these include their transitivity (i.e. whether all sites are equivalent or not), their normality (i.e. whether proper rotations correspond to even permutations and improper rotations correspond to odd permutations), and the number of sites in their symmetry planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. For part 12 of this series see King, R. B.: Inorg. Chim. Acta 57, 79 (1981)

    Google Scholar 

  2. Ruch, E.: Accts. Chem. Res. 5, 49 (1972)

    Google Scholar 

  3. Cotton, F. A.: Chemical applications of group theory, New York: Wiley-Interscience 1971

    Google Scholar 

  4. Ruch, E., Schönhofer, A.: Theoret. Chim. Acta (Berl.) 10, 91 (1968)

    Google Scholar 

  5. Ruch, E., Schönhofer, A. Theoret. Chim. Acta (Berl.) 19, 225 (1970)

    Google Scholar 

  6. Mead, C. A.: Top. Curr. Chem. 49, 1 (1974)

    Google Scholar 

  7. Keller, H., Langer, E., Lehner, H., Derflinger, G.: Theoret. Chim. Acta (Berl.) 49, 93 (1978)

    Google Scholar 

  8. Derflinger, G., Keller, H.: Theoret. Chim. Acta (Berl.) 49, 101 (1978)

    Google Scholar 

  9. Ruch, E.: Theoret. Chim. Acta (Berl.) 49, 107 (1978)

    Google Scholar 

  10. Mead, C. A.: Theoret. Chim. Acta (Berl.) 54, 165 (1980)

    Google Scholar 

  11. Dugundji, J., Marquarding, D., Ugi, I.: Chem. Scripta 9, 74 (1976)

    Google Scholar 

  12. Hasselbarth, W.: Chem. Scripta 10, 97 (1976)

    Google Scholar 

  13. Mead, C. A.: Chem. Scripta 10, 101 (1976)

    Google Scholar 

  14. Dugundji, J., Marquarding, D., Ugi, I.: Chem. Scripta 11, 17 (1977)

    Google Scholar 

  15. Hässelbarth, H.: Chem. Scripta 11, 148 (1977)

    Google Scholar 

  16. Mead, C. A.: Chem. Scripta 11, 145 (1977)

    Google Scholar 

  17. King, R. B.: J. Am. Chem. Soc. 91, 7211 (1969)

    Google Scholar 

  18. King, R. B.: Inorg. Chem. 20, 363 (1981)

    Google Scholar 

  19. Pople, J. A.: J. Am. Chem. Soc. 102, 4615 (1980)

    Google Scholar 

  20. Biggs, N. L.: Finite groups of automorphisms. London: Cambridge University Press 1971

    Google Scholar 

  21. Budden, F. J.: The fascination of groups. London: Cambridge University Press 1972

    Google Scholar 

  22. De Bruin, N. G.: in Applied combinatorial mathematics, E. F. Beckenbach, Ed., Chapter 5. New York: Wiley 1964

    Google Scholar 

  23. Chisholm, C. D. H.: Group theoretical techniques in quantum chemistry, Chapter 6. New York, New York: Academic Press 1976

    Google Scholar 

  24. Mumaghan, F. D.: The theory of group representations, Chapter 5. Baltimore, Maryland: Johns Hopkins 1938

    Google Scholar 

  25. Littlewood, D. E., Richardson, A. R.: Phil. Trans. R. Soc (London) Ser. A 233, 99–141 (1934)

    Google Scholar 

  26. Dehn, E.: Algebraic equations. New York, New York: Columbia University Press 1930

    Google Scholar 

  27. Keller, H., Krieger, C., Langer, E. H., Derflinger, G.: Liebigs Ann. Chem. 1296 (1977)

  28. Keller, H., Krieger, C., Langer, E., Derflinger, G.: J. Mol. Struct. 40, 279 (1977)

    Google Scholar 

  29. Ruch, E., Runge, W., Kresze, G.: Angew. Chem. Intern. Ed. 12, 20 (1973)

    Google Scholar 

  30. Grünbaum, B.: Convex polytopes. New York, New York: Interscience Publishers 1967

    Google Scholar 

  31. Kuratowski, K.: Fundam. Math. 15, 271 (1930)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

King, R.B. Chemical applications of topology and group theory 13. Chirality and framework groups [1]. Theoret. Chim. Acta 63, 103–132 (1983). https://doi.org/10.1007/BF00548015

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00548015

Key words

Navigation