Theoretica chimica acta

, Volume 62, Issue 4, pp 351–372 | Cite as

A CNDO/INDO crystal orbital model for transition metal polymers of the 3d series—basis equations

  • Michael C. Böhm
Original Investigations

Abstract

The crystal orbital formalism in the tight-binding approximation is combined with a recently developed CNDO/INDO model for transition metal species of the 3d series in order to allow band structure calculations on the Hartree-Fock (HF) SCF level for one-dimensional (1D) chains with organometallic unit cells. The band structure approach based on the CNDO and INDO approximation can be used for any atom combination up to bromine under the inclusion of the 3d series. The matrix elements for the tight-binding Hamiltonian are derived for an improved CNDO and INDO framework. The total energy of the 1D chain is partitioned into one-center contributions and into two-center increments of the intracell and intercell type. Semiempirical band structure calculations on simple model systems are compared with available ab initio data of high quality.

Key words

Tight-binding formalism for 3d polymers Band structure approach in the CNDO/INDO approximation Basis equations and parametrization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yoffe, A. D.: Chem. Soc. Rev. 5, 51 (1976); Goodings, E. P.: ibid. 5, 91 (1976); Miller, J. S., Epstein, A. J.: Prog. Inorg. Chem. 20, 1 (1976); Hanack, M.: Nachr. Chem. Techn. Lab. 8, 632 (1980)Google Scholar
  2. 2.
    Keller, H. J., Ed.: Chemistry and physics of one dimensional metals. New York: Plenum Press 1978; Keller, H. J., Ed.: Low dimensional cooperative phenomena. New York: Plenum Press 1975, Hatfield, W. E. Ed.: Molecular metals. New York: Plenum Press 1979Google Scholar
  3. 3.
    Krogmann, K.: Angew. Chem. 81, 10 (1969)Google Scholar
  4. 4.
    Cowan, D. O., Park, J., Pittmann, C. U., Sasaki, Y., Mukherjee, T. K., Diamond, N. A.: J. Am. Chem. Soc. 94, 5110 (1972).Google Scholar
  5. 5.
    Gleizes, A., Marks, T. J., Ibers, J. A.: J. Am. Chem. Soc. 97, 3546 (1975); Cowie, M., Gleizes, A., Grynkewich, G. W., Kalina, D. W., McGlure, M. S., Scaringe, R. P., Teitelbaum, R. C., Ruby, S. L., Ibers, J. A., Kannewurf, C. R., Marks, T. J.: ibid. 101, 2921 (1979); Kalina, D. W., Lyding, J. W., Ratajack, M. T., Kannewurf, C. R., Marks, T. J.: ibid, 102, 7854 (1980)Google Scholar
  6. 6.
    Brown, L. D., Kalina, D. W., McGlure, M. S., Schultz, S., Ruby, S. L., Ibers, J. A., Kannewurf, C. R., Marks, T. J.: J. Am. Chem. Soc. 101, 2937 (1979)Google Scholar
  7. 7.
    Schramm, C. J., Scaringe, R. P., Stojakovic, D. R., Hoffman, B. M., Ibers, J. A., Marks, T. J.: J. Am. Chem. Soc. 102, 6702 (1980)Google Scholar
  8. 8.
    Petersen, J. L., Schramm, C. S., Stojakovic, D. R., Hoffman, B. M., Marks, T. J.: J. Am. Chem. Soc. 99, 286 (1977); Phillips, T.E., Hoffman, B. M.: ibid. 99, 7734 (1977); Schramm, C. J., Stojakovic, D. R., Hoffman, B. M., Marks, T. J.: Science 200, 47 (1978)Google Scholar
  9. 9.
    Philips, T. E., Scaringe, R. P., Hoffman, B. M., Ibers, J. A.: J. Am. Chem. Soc. 102, 3435 (1980); Martinsen, J., Pace, L. J., Philipps, T. E., Hoffman, B. M., Ibers, J. A.: ibid. 104, 83 (1982)Google Scholar
  10. 10.
    Schoch, K. F., Kundalkar, B. R., Marks, T. J.: J. Am. Chem. Soc. 101, 7071 (1979)Google Scholar
  11. 11.
    Interrante, L. V., Messmer, R. P.: Chem. Phys. Letters 26, 225 (1974)Google Scholar
  12. 12.
    Bullett, D. W.: Solid State Commun. 23, 893 (1977)Google Scholar
  13. 13.
    Whangbo, M.-H., Hoffmann, R.: J. Am. Chem. Soc. 100, 6093 (1978)Google Scholar
  14. 14.
    Seelig, F. F.: Z. Naturforsch. 34a, 986 (1979)Google Scholar
  15. 15.
    Whangbo, M.-H.: J. Chem. Phys. 70, 4963 (1979); Whangbo, M.-H.: ibid. 73, 3854 (1980)Google Scholar
  16. 16.
    Whangbo, M.-H., Foshee, M. J., Hoffmann, R.: Inorg. Chem. 19, 1723 (1980)Google Scholar
  17. 17.
    Böhm, M. C., Gleiter, R.: Theoret. Chim. Acta (Berl.) 59, 127 (1981)Google Scholar
  18. 18.
    Böhm, M. C., Gleiter, R.: Theoret. Chim. Acta (Berl.) 59, 153 (1981)Google Scholar
  19. 19.
    Böhm, M. C., Gleiter, R.: J. Organomet. Chem. 228, 1 (1982)Google Scholar
  20. 20.
    Böhm, M. C., Eckert-Maksić, M., Ernst, R. D., Wilson, D. R., Gleiter, R.: J. Am. Chem. Soc. 104, 2699 (1982)Google Scholar
  21. 21.
    Ionization energies determined by means of the ΔSCF or Transition Operator (TO) method: Böhm, M. C., Gleiter, R., Batich, C. D.: Helv. Chim. Acta 63, 990 (1980); Böhm, M. C., Gleiter, R.: Z. Naturforsch. 35b, 1028 (1980); Böhm, M. C., Gleiter, R.: Chem. Ber. 113, 3647, (1980); Böhm, M. C., Gleiter, R.: J. Comput. Chem. 1, 407 (1980)Google Scholar
  22. 22.
    Ionization energies determined by means of the Green's function method: Böhm, M. C., Gleiter, R.: Theoret. Chem. Acta (Berl.) 57, 315 (1980); Böhm, M. C.: Z. Naturforsch. 36a, 1361 (1981); Böhm, M. C., Gleiter, R.: Chem. Phys. 64, 183 (1982); Böhm, M. C., Gleiter, R., Petz, W.: Inorg. Chim. Acta 59, 255 (1982); Böhm, M. C.: Z. Phys. Chem. (Neue Folge) 129, 149 (1982); Böhm, M. C.: J. Molec. Struct. (Theochem) 89, 165 (1982)Google Scholar
  23. 23.
    Böhm, M. C.: Ber. Bunsenges. Phys. Chem. 85, 755 (1981); Böhm, M. C.: Chem. Phys. 60, 227 (1981); Böhm, M. C.: Theoret. Chim. Acta (Berl.) 60, 233 (1981); Böhm, M. C.: Mol. Phys. 46, 683 (1982); Böhm, M. C.: Int. J. Quantum Chem. submitted for publication.Google Scholar
  24. 24.
    Pople, J. A., Beveridge, D. L.: Approximate molecular orbital theory. New York: McGraw Hill, 1970Google Scholar
  25. 25.
    Del Re, G., Ladik, J., Biczó, G.: Phys. Rev. 155, 997 (1967)Google Scholar
  26. 26.
    Ladik, J.: Electronic structure of polymers and molecular crystals. Andre, J.-M., Ladik, J., Ed. New York: Plenum Press 1975Google Scholar
  27. 27.
    Morokuma, K.: J. Chem. Phys. 54, 962 (1971)Google Scholar
  28. 28.
    Fujita, H., Imamura, A.: J. Chem. Phys. 53, 4555 (1971)Google Scholar
  29. 29.
    McAloon, B. J., Perkins, P. G.: J.C.S. Faraday II 68, 1121 (1972)Google Scholar
  30. 30.
    Marwaha, A. K., Perkins, P. G., Steward, J. J. P.: Theoret. Chim. Acta (Berl.) 57, 1 (1980)Google Scholar
  31. 30.a
    Cetina, E. A., Perkins, P. G.: Theoret. Chim. Acta (Berlin) 58, 257 (1981)Google Scholar
  32. 31.
    O'Shea, S., Santry, D. P.: J. Chem. Phys. 54, 2667 (1971)Google Scholar
  33. 32.
    Beveridge, D. L., Jano, I., Ladik, J.: I. Chem. Phys. 56, 4744 (1972)Google Scholar
  34. 33.
    Ladik, J.: Quantum theory of polymers. Andre, J.-M., Delhalle, J., Ladik, J., Ed. Dordrecht-Boston: D. Reidel Publ. Co. 1978Google Scholar
  35. 34.
    Kertész, M., Koller, J., Ažman, A. in: Recent advances in the quantum theory of polymers. Lecture Notes in Physics, Vol. 113 Berlin: Springer Verlag 1980Google Scholar
  36. 35.
    Perkins, P. G., Marwaha, A. K., Steward, J. J. P.: Theoret. Chim. Acta (Berl.) 59, 555 (1981); Perkins, P. G., Marwaha, A. K., Steward, J. J. P.: ibid. 59, 569 (1981)Google Scholar
  37. 36.
    Bullett, D. W. in: Solid state physics, Vol. 35, Ehrenreich, H., Seitz, F., Turnbull, D., Ed. New York: Academic Press 1980Google Scholar
  38. 37.
    Roothan, C. C. J.: Rev. Mod. Phys. 23, 69 (1951); Ruttink, D. J. A.: Theoret. Chim. Acta (Berl.) 6, 83 (1966)Google Scholar
  39. 38.
    Brown, R. D., Roby, K. R.: Theoret. Chim. Acta (Berl.) 16, 175 (1970)Google Scholar
  40. 39.
    Bloch, F.: Z. Physik 52, 555 (1928)Google Scholar
  41. 40.
    Slater, J. C.: Quantum theory of molecules and solids. Vol. 2 New York: McGraw Hill 1965Google Scholar
  42. 41.
    Sichel, J. M., Whitehead, M. A.: Theoret. Chim. Acta (Berl.) 11, 220 (1968); DiSipio, L., Tondello, E., DeMichaelis, G., Oleari, L.: Chem. Phys. Letters 3, 287 (1971)Google Scholar
  43. 42.
    Ruedenberg, K.: Rev. Mod. Phys. 34, 326 (1962); Feinberg, M. J., Ruedenberg, K., Mehler, E. L.: Advan. Quantum Chem. 5, 27 (1970); Kutzelnigg, W.: Angew. Chem. 85, 551 (1973)Google Scholar
  44. 43.
    Burns, G.: J. Chem. Phys. 41, 1521 (1964)Google Scholar
  45. 44.
    Figeys H. P., Geerlings, P., Vay Alsenoy, C.: Int. J. Quantum Chem. 11, 705 (1977); Nanda, D. N., Narasimhan, P. T.: ibid. 11, 215 (1977)Google Scholar
  46. 45.
    Condon, E. U., Shortley, G. H.: The theory of atomic spectra. Cambridge: Cambridge University Press 1970Google Scholar
  47. 46.
    Dewar, M. J. S., Hojvat (Sabelli), N. L.: J. Chem. Phys. 34, 1232 (1961); Dewar, M. J. S., Hojvat (Sabelli), N. L.: Proc. Roy. Soc. Ser. A 264, 431 (1961); Dewar, M. J. S., Sabelli, N. L.: J. Phys. Chem. 66, 2310 (1962); Ohno, K.: Theoret. Chim. Acta (Berl.) 3, 219 (1964); Klopman, G.: J. Am. Chem. Soc. 86, 4550 (1964)Google Scholar
  48. 47.
    Wilkinson, J. H.: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965; Smith, B. T., Boyle, J. M., Garbow, B. S., Ikebe, Y., Klema, V. C., Moler, C. B.: Matrix eigensystem routines. Berlin: Springer Verlag 1974Google Scholar
  49. 48.
    Bacon, A. D., Zerner, M. C.: Theoret. Chim. Acta (Berl.) 53, 21 (1979)Google Scholar
  50. 49.
    Hartree, D. R.: The calculation of atomic structures. New York: Wiley Interscience 1957Google Scholar
  51. 50.
    Pople, J. A., Segal, G. A.: J. Chem. Phys. 43, 5136 (1965)Google Scholar
  52. 51.
    Fischer, H., Kollmar, H.: Theoret. Chim. Acta (Berl.) 16, 163 (1970)Google Scholar
  53. 52.
    Imamura, A., Fujita, H.: J. Chem. Phys. 61, 115 (1974)Google Scholar
  54. 53.
    Dewar, M. J. S., Lo, D. H.: J. Am. Chem. Soc. 93, 7201 (1971)Google Scholar
  55. 54.
    Misurkin, I. A., Ovchinnikov, A. A.: Mol. Phys. 27, 237 (1974)Google Scholar
  56. 55.
    Girerd, J.-J., Charlot, M.-F., Kahn, O.: Mol. Phys. 34, 1063 (1977); Kahn, O., Charlot, M.-F.: Nouv. J. Chim. 4, 567 (1980)Google Scholar
  57. 56.
    Karpfen, A.: Chem. Phys. 47, 401 (1980)Google Scholar
  58. 57.
    Brédas, J. L., Chance, R. R., Silbey, R., Nicolas, G., Durand, P.: J. Chem. Phys. 75, 255 (1981)Google Scholar
  59. 58.
    Karpfen, A., Petkov, J.: Theoret. Chim. Acta (Berl.) 53, 65 (1979)Google Scholar
  60. 59.
    Karpfen, A.: J. Phys. C 13, 5673 (1980)Google Scholar
  61. 60.
    Karpfen, A.: J. Phys. C 12, 3227 (1979)Google Scholar
  62. 61.
    Armstrong, D. R.: Theoret. Chim. Acta (Berl.) 60, 159 (1981)Google Scholar
  63. 62.
    Ladik, J., Suhai, S., Otto, P., Collins.: Int. J. Quantum Chem. QBS 4, 55 (1977); Suhai, S. in: Quantum theory of polymers. Andre, J.-M., Delhalle, J., Ladik, J., Ed. Dordrecht-Boston: D. Reidel Publ. Co. 1978Google Scholar
  64. 63.
    Brandow, B. H.: Int. J. Quantum Chem. 15, 207 (1979); Cooper, I. L., Linderberg, J.: Mol. Phys. 25, 265 (1973); Yamaguchi, K.: Theor. Chim. Acta (Berl.) 49, 151 (1978)Google Scholar
  65. 64.
    Rose, M. E.: Elementary theory of angular momentum. New York: John Wiley 1957; Tinkham, M.: Group theory and quantum mechanics. New York: McGraw Hill 1964Google Scholar
  66. 65.
    Schäffer, C. E., Jørgensen, C. K.: Mol. Phys. 9, 401 (1965); Schäffer, C. E.: Struct. Bonding 5, 68 (1968)Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Michael C. Böhm
    • 1
  1. 1.Institut für Organische Chemie der UniversitätHeidelbergFederal Republic of Germany

Personalised recommendations