Advertisement

Theoretica chimica acta

, Volume 39, Issue 1, pp 75–91 | Cite as

The influence of vibronic interactions on the chiroptical spectra of dissymmetric pseudo tetragonal metal complexes

  • Frederick S. Richardson
  • Gary Hilmes
  • Jacqueline J. Jenkins
Article

Abstract

The influence of vibronic interactions on the chiroptical spectra associated with a threesome of nearly degenerate electronic excited states in a dissymmetric molecular system is examined on a formal theoretical model. The model considers two vibrational modes to be effective in promoting pseudo Jahn-Teller (PJT) type interactions between the three closely spaced electronic excited states. Formal expressions are developed for the rotatory strengths of individual vibronic levels derived from the coupled electronic states. Two mode (vibrational)-three state (electronic) vibronic Hamiltonians are constructed (basis set size, 63–108, depending upon interaction parameters used) and diagonalized for a large number of different parameter sets representative of various vibronic coupling strengths, electronic energy level spacings, oscillator (vibrational mode) frequencies, and electronic rotatory strengths. Diagonalization of these vibronic Hamiltonians yields vibronic wave functions and energies which are then used to calculate “rotatory strength spectra” for the model system. The calculated results demonstrate the profound influence which vibronic interactions of the PJT type may have on the sign patterns and intensity distributions within the rotatory strength spectrum associated with a set of nearly degenerate electronic states. The implication of these results for the interpretation of circular dichroism spectra of chiral transition metal complexes with pseudo tetragonal symmetry are discussed.

Key words

Metal complexes Chiroptical spectra, influence of vibronic interactions on ∼ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Englman,R.: The Jahn-Teller effect in molecules and crystals. New York: Wiley-Interscience 1972Google Scholar
  2. 2.a)
    Weigang,O.E.: J. Chem. Phys. 42, 2244 (1965)Google Scholar
  3. 2.b)
    Weigang,O.E.: J. Chem. Phys. 43, 3609 (1965)Google Scholar
  4. 2.c)
    Harnung,S.E., Ong,E.C., Weigang,O.E.; J. Chem. Phys. 55, 5711 (1971Google Scholar
  5. 2.d)
    Weigang,O.E., Ong,E.C.: Tetrahedron 30, 1783 (1974)Google Scholar
  6. 3.
    Caliga,D., Richardson,F.S.: Mol. Phys. 28, 1145 (1974)Google Scholar
  7. 4.
    Richardson, F.S., Hilmes, G.: Mol. Phys., in pressGoogle Scholar
  8. 5.
    Richardson,F.S., Caliga,D., Hilmes,G., Jenkins,J.J.: Mol. Phys., in pressGoogle Scholar
  9. 6.a)
    Richardson,F.S.: J. Chem. Phys. 54, 2453 (1971)Google Scholar
  10. 6.b)
    Richardson,F.S.: Inorg. Chem. 10, 2121 (1971)Google Scholar
  11. 6.c)
    Richardson,F.S.: Inorg. Chem. 11, 2366 (1972)Google Scholar
  12. 6.d)
    Strickland,R.W., Richardson,F.S.: Inorg. Chem. 12, 1025 (1973)Google Scholar
  13. 6.e)
    Strickland,R.W., Richardson,F.S.: J. Chem. Phys. 57, 589 (1972)Google Scholar
  14. 7.a)
    See for example: Mason,S.F.: J. Chem. Soc. A, 667 (1971)Google Scholar
  15. 7.b)
    See for example: Bosnich,B., Harrowfield,J.M.: J. Am. Chem. Soc. 94, 3425 (1972)Google Scholar
  16. 7.c)
    See for example: Hawkins,C.J., Larsen,E.: Acta Chem. Scand. 19, 185 1969 (1965)Google Scholar
  17. 7.d)
    See for example: Evans,R.S., Schreiner,A.F., Hauser,P.J.: Inorg. Chem. 13, 2185 (1974)Google Scholar
  18. 7.e)
    See for example: Liehr,A.D.: J. Phys. Chem. 68, 3629 (1964)Google Scholar
  19. 7.f)
    See for example: Schaffer,C.E.: Proc. Roy. Soc. Ser. A 297, 96 (1968)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Frederick S. Richardson
    • 1
  • Gary Hilmes
    • 1
  • Jacqueline J. Jenkins
    • 1
  1. 1.Department of ChemistryUniversity of Virginia at CharlottesvilleUSA

Personalised recommendations