Skip to main content
Log in

Numerical integration of overlap and ligand contributions to the electric field gradient

  • Original Investigations
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The total electric field gradient (EFG) tensor V pq is calculated by numerical integration of threedimensional integrals. Each of them is solved a) by integrating over one dimension analytically and b) by integrating over the remaining two dimensions on the basis of a Gauss-type integration rule. The use of 100 abscissas in the twodimensional numerical integration scheme yields satisfactory accuracy which was checked by evaluating overlap integrals; an increase to 400 abscissas does not increase the result drastically. Calculating quadrupole splittings ΔE Q from numerically integrated electric field gradient tensors V pq we observe that depending a) on the amount of covalency and b) on the amount of deviation from octahedral or tetrahedral symmetry, involved in a molecular system, overlap and ligand contributions to V pq play an important role. Especially for the sandwich compound ferrocene, Fe(C5H5)2, we find a significant difference between ΔE num. int.Q which follows from the numerical integration method, and ΔE conventionalQ which is derived from effective charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ingalls, R.: Phys. Rev. 128, 1155 (1962)

    Google Scholar 

  2. Trautwein, A., Harris, F. E., Dezsi, I.: Theoret. Chim. Acta (Berl.) 35, 231 (1974)

    Google Scholar 

  3. Trautwein, A., Reschke, R., Dezsi, I., Harris, F. E.: J. de Phys. 37, C6, 463 (1976)

    Google Scholar 

  4. Sternheimer, R. M.: Phys. Rev. 80, 102 (1950); Phys. Rev. 84, 244 (1951); Phys. Rev. 95, 736 (1954); Phys. Rev. 105, 158 (1957)

    Google Scholar 

  5. Pople, J. A., Beveridge, D. L.: Approximate molecular orbital theory. New York: McGraw-Hill 1970

    Google Scholar 

  6. Rein, R., Clarke, G. A., Harris, F. E.: Quantum aspects of heterocyclic compounds in chemistry and biochemistry II. Israel Academy of Sciences and Humanities 1970

  7. Löwdin, P. O.: Phys. Rev. 97, 1474 (1955)

    Google Scholar 

  8. Foley, H. M., Sternheimer, R. M., Tycko, D.: Phys. Rev. 93, 734 (1954)

    Google Scholar 

  9. Edmonds, A. R.: Drehimpulse in der Quantenmechanik. Mannheim, Wien, Zürich: Bibliographisches Institut

  10. Harris, F. E.: Computational methods of quantum chemistry. TXVII prepared for the 1967 Summer Institute in Quantum Chemistry, Solid State Physics and Quantum Biology, Uppsala, Sweden

  11. Trautwein, A., Harris, F. E.: Theoret. Chim. Acta (Berl.) 30, 45 (1973)

    Google Scholar 

  12. Fraga, S., Karwowski, J.: Tables of Hartree-Fock atomic data. University of Alberta, Edmonton, Canada T6G2G2

  13. Moore, C. E.: Atomic energy levels. Cur. Nat. Bur. Std. (1949)

  14. Zimmermann, R., Trautwein, A., Harris, F. E.: Phys. Rev. B12, 3902 (1975)

    Google Scholar 

  15. Trautwein, A., Kreber, E., Gonser, U., Harris, F. E.: J. Phys. Chem. Solids 36, 325 (1975)

    Google Scholar 

  16. Reschke, R., Trautwein, A., Desclaux, J. P.: J. Phys. Chem. Solids 38, 837 (1977)

    Google Scholar 

  17. Trautwein, A., Reschke, R., Zimmermann, R., Dézsi, I., Harris, F. E.: J. de Phys. 35, C6, 235 (1974)

    Google Scholar 

  18. Ingalls, R. I.: Phys. Rev. 133, A787 (1964)

    Google Scholar 

  19. Johnson, C. E.: Proc. Phys. Soc. (London) 92, 748 (1967)

    Google Scholar 

  20. Zurmühl, R.: Praktische Mathematik. Berlin, Heidelberg, New York: Springer Verlag 1965

    Google Scholar 

  21. Davis, Ph. J., Rabinowitz, Ph.: Methods of numerical integration. New York: Academic Press 1975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reschke, R., Trautwein, A. Numerical integration of overlap and ligand contributions to the electric field gradient. Theoret. Chim. Acta 47, 85–96 (1978). https://doi.org/10.1007/BF00547746

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547746

Key words

Navigation