Fibre Chemistry

, Volume 23, Issue 5, pp 392–396 | Cite as

Modification of polyacrylonitrile fibres to improve the properties of carbon fibres prepared from them

  • V. N. S”rmadzhieva
  • P. D. Mikhailova
Physicomechanical Properties And Application Of Man-Made Fibres


-- It has been found that treatment of acrylonitrile fibres obtained by the wet dimethyl formamide method before thermal oxidation with inorganic salts considerably changes the properties of the thermally oxidized fibres.

-- On treatment of the fibres with an aqueous solution containing copper ion in a reducing medium, their sorptive powers are considerably impaired, the fibre diameter is increased, and the electrical conductivity is increased, plus processes of cyclization and oxidation are accelerated.

-- On treatment with a solution of aluminum chloride in the presence of orthophosphoric acid, the fibre structure is made denser and its strength is increased.

-- Sodium thiosulfate as a modifier considerably changes the functional composition of polyacrylonitrile fibres; thereupon, a process of structural amorphization takes place.


Electrical Conductivity Orthophosphoric Acid Carbon Fibre Sodium Thiosulfate Formamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. A. Konkin, Carbon and Other Heat-Resistant Fibrous Materials [in Russian], Khimiya, Moscow (1974), pp. 166–170.Google Scholar
  2. 2.
    M. O. Aslanova, A. A. Konkin, G. I. Kudryavtsev, et al., In: Heat and Flame Resistant Fibers [in Russian], A. A. Konkin (ed.), Khimiya, Moscow (1978), pp. 260–273.Google Scholar
  3. 3.
    S. Simamura, Carbon Fibres [Russian translation], Mir, Moscow (1987), pp. 31–50.Google Scholar
  4. 4.
    French Patent 1602487 (1971).Google Scholar
  5. 5.
    U. S. Patent 4460650 (1984).Google Scholar
  6. 6.
    U. S. Patent 1578492 (1980).Google Scholar
  7. 7.
    Inventor's Certificate 389012 (1973) (USSR).Google Scholar
  8. 8.
    S. Karaivanova and A. Badev, Angew. Makromol. Chem., 140, 32 (1986).Google Scholar
  9. 9.
    R. B. Mathur, D. Gubta, O. P. Bahl, and T. L. Dhami, Fibre Sci. and Technol., 20, 227–234 (1984).Google Scholar
  10. 10.
    E. N. Zil'berman, Uspekhi Khimii, 4, No. 1, 62–78 (1986).Google Scholar
  11. 11.
    Sh. G. Abdurakhmanova, I. F. Khudoshev, and T. I. Dvalishvili, Khim. Volokna, No. 4, 40–41 (1989).Google Scholar
  12. 12.
    A. N. Grebenkin, E. P. Romanova, A. I. Kol'tsov, and E. I. Firsov, Zhurn. Prikl. Khimii, No. 8, 1834–1837 (1985).Google Scholar
  13. 13.
    N. V. Platonova and I. V. Klimenko, Vysokomol. Soed., Ser. A, No. 11, 2464–2468 (1980).Google Scholar
  14. 14.
    E. P. Romanova and I. G. Rumynskaya, Vysokomol. Soed., Ser. A, No. 1, 45–52 (1986).Google Scholar
  15. 15.
    G. H. Olivé and S. Olivé, Adv. Polymer. Sci., 32, No. 1, 123 (1979).Google Scholar
  16. 16.
    U. S. Patent 4349523 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • V. N. S”rmadzhieva
    • 1
  • P. D. Mikhailova
    • 1
  1. 1.Bulgaria

Personalised recommendations