Skip to main content
Log in

Recovery in deformed copper and nickel single crystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The static recovery behaviour of copper and nickel single crystals deformed in multiple slip was investigated in mechanical tests and in HVEM in situ annealing experiments. Recovery of Type I, as previously identified in aluminium was observed in both its microscopic and macroscopic features: a sharpening of the cell-wall structure without a change in substructure scale, correlated with a short transient in the strain-hardening behaviour during retesting. The substructure development with increasing recovery time and temperature is similar to that during dynamic recovery, i.e. with increasing strain in a continuous test. After longer recovery times or at higher annealing temperatures, the specimens recrystallize; after larger strains, they recrystallize dynamically. An intermediate stage akin to the Type II recovery found in aluminium was never observed, either in its macroscopic manifestation of a long reloading transient, or as a general coarsening of the subgrain structure. Examples of local sub-boundary mobility and dissolution were, however, seen in situations close to static or dynamic recrystallization. It is concluded that the fluctuations occurring during subgrain coarsening are stable in aluminium, leading to Type II recovery and extended steady-state deformation, but unstable in copper and nickel, leading to static or dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. F. Rocks, J. Eng. Mater. Technol. (ASME series H) 98 (1976) 76.

    Google Scholar 

  2. F. J. Humpreys and J. W. Martin, Phil. Mag. 16 (1967) 927.

    Google Scholar 

  3. T. Hasegawa and U. F. Kocks, Acta Metall. 27 (1979) 1705.

    Google Scholar 

  4. U. F. Kocks and H. Mecking, in “Strength of Metals and Alloys”, edited by P. Hasen, V. Gerold and G. Kostorz (Pergamon, New York, 1979) p. 345.

    Google Scholar 

  5. T. E. Tietz, C. L. Meyers and J. L. Lytton, Trans. AIME 224 (1962) 339.

    Google Scholar 

  6. J. E. Bailey, “Electron Microscopy and Strength of Crystals” (Wiley, New York, 1963) p. 535.

    Google Scholar 

  7. R. A. Vandermeer and P. Gordon, “Recovery and Recrystallization of Metals” (Interscience Publ., New York, 1963) p. 211.

    Google Scholar 

  8. E. C. W. Perryman, in “Creep and Recovery” (ASM, Cleveland, 1957) p. 111.

    Google Scholar 

  9. W. G. Truckner and D. E. Mikkola, Metall. Trans. 8A (1977) 45.

    Google Scholar 

  10. J. Friedel, “Dislocations” (Pergamon, New York, 1964) p. 275.

    Google Scholar 

  11. R. W. Cahn, “Physical Metallurgy” (North-Holland Publ., Amsterdam, 1965) p. 925.

    Google Scholar 

  12. F. Kirch, doctoral dissertation, RWTH Aachen (1970).

    Google Scholar 

  13. H. Mecking and G. Gottstein, in “Recrystallization of Metallic Materials” 2nd edn, edited by F. Haessner (Dr. Riederer-Verlag, Stuttgart, 1978) p. 195.

    Google Scholar 

  14. U. F. Kocks, Acta Metall. 6 (1958) 85.

    Google Scholar 

  15. H. Mecking and U. F. Kocks, ibid. 29 (1981) 1865.

    Google Scholar 

  16. T. Hasegawa, T. Yakou and U. F. Kocks, ibid. 30 (1982) 235.

    Google Scholar 

  17. T. V. Cherian, P. Pietrowsky and J. E. Dorn, Metall. Trans. 185 (1949) 948.

    Google Scholar 

  18. T. H. Alden, Metall. Trans. 4 (1973) 1047.

    Google Scholar 

  19. G. Gottstein, D. Zabardjadi and H. Mecking, Met. Sci. 13 (1979) 223.

    Google Scholar 

  20. P. J. T. Stuitje and G. Gottstein, Z. Metallkd. 71 (1980) 279.

    Google Scholar 

  21. G. Gottstein and U. F. Kocks, Acta Metall. 31 (1983) 175.

    Google Scholar 

  22. G. Gottstein, J. Bewerunge, H. Mecking and H. Wollenberger, ibid. 23 (1975) 641.

    Google Scholar 

  23. T. Sakai, private communication (1982).

  24. G. Van Drunen and S. Saimoto, Acta Metall. 19 (1971) 213.

    Google Scholar 

  25. Idem, Metall. Trans. 10A (1979) 783.

    Google Scholar 

  26. F. Prinz, A. S. Argon and W. C. Moffatt, Acta Metall. 30 (1982) 821.

    Google Scholar 

  27. P. Haasen and A. Kelly, Acta Metall. 5 (1957) 192.

    Google Scholar 

  28. H. J. McQueen and J. J. Jonas, in “Treatise in Materials Science and Technology” Vol. 6, edited by R. J. Arsenault (Academic Press, New York, 1975) p. 393.

    Google Scholar 

  29. W. Blum, doctoral dissertation, University Erlangen (1978).

  30. P. Karduck, G. Gottstein and H. Mecking, to be published.

  31. A. Wantzen, doctoral dissertation, TU Hamburg-Harburg (1982).

  32. G. Thomas and M. J. Goringe, “Transmission Electron Microscopy of Materials” (Wiley, New York, 1979).

    Google Scholar 

  33. T. Hasegawa, S. Karashima and R. Hasegawa, Metall. Trans. 2 (1971) 1449.

    Google Scholar 

  34. P. Karduck, doctoral dissertation, RWTH Aachen (1981).

    Google Scholar 

  35. H. J. McQueen, Trans. Jpn. Inst. Met. Met. 9 (Suppl., 1968) 170.

    Google Scholar 

  36. J. P. A. Immarigeon and J. J. Jonas, Acta Metall. 19 (1971) 1053.

    Google Scholar 

  37. W. B. Hutchinson and R. K. Ray, Phil. Mag. 28 (1973) 953.

    Google Scholar 

  38. D. Caillard and J. L. Martin, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire (Pineridge Press, Swansea, 1981) p. 17.

    Google Scholar 

  39. G. Gottstein, submitted to Met. Sci.

  40. A. Wantzen and H. Mecking, unpublished research, (TU Hamburg-Harburg).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, R.E., Gottstein, G. & Kocks, U.F. Recovery in deformed copper and nickel single crystals. J Mater Sci 18, 2650–2664 (1983). https://doi.org/10.1007/BF00547581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547581

Keywords

Navigation