Advertisement

Journal of Materials Science

, Volume 18, Issue 9, pp 2650–2664 | Cite as

Recovery in deformed copper and nickel single crystals

  • R. E. Cook
  • G. Gottstein
  • U. F. Kocks
Papers

Abstract

The static recovery behaviour of copper and nickel single crystals deformed in multiple slip was investigated in mechanical tests and in HVEM in situ annealing experiments. Recovery of Type I, as previously identified in aluminium was observed in both its microscopic and macroscopic features: a sharpening of the cell-wall structure without a change in substructure scale, correlated with a short transient in the strain-hardening behaviour during retesting. The substructure development with increasing recovery time and temperature is similar to that during dynamic recovery, i.e. with increasing strain in a continuous test. After longer recovery times or at higher annealing temperatures, the specimens recrystallize; after larger strains, they recrystallize dynamically. An intermediate stage akin to the Type II recovery found in aluminium was never observed, either in its macroscopic manifestation of a long reloading transient, or as a general coarsening of the subgrain structure. Examples of local sub-boundary mobility and dissolution were, however, seen in situations close to static or dynamic recrystallization. It is concluded that the fluctuations occurring during subgrain coarsening are stable in aluminium, leading to Type II recovery and extended steady-state deformation, but unstable in copper and nickel, leading to static or dynamic recrystallization.

Keywords

Dynamic Recrystallization High Annealing Temperature Dynamic Recovery Annealing Experiment Static Recovery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. F. Rocks, J. Eng. Mater. Technol. (ASME series H) 98 (1976) 76.Google Scholar
  2. 2.
    F. J. Humpreys and J. W. Martin, Phil. Mag. 16 (1967) 927.Google Scholar
  3. 3.
    T. Hasegawa and U. F. Kocks, Acta Metall. 27 (1979) 1705.Google Scholar
  4. 4.
    U. F. Kocks and H. Mecking, in “Strength of Metals and Alloys”, edited by P. Hasen, V. Gerold and G. Kostorz (Pergamon, New York, 1979) p. 345.Google Scholar
  5. 5.
    T. E. Tietz, C. L. Meyers and J. L. Lytton, Trans. AIME 224 (1962) 339.Google Scholar
  6. 6.
    J. E. Bailey, “Electron Microscopy and Strength of Crystals” (Wiley, New York, 1963) p. 535.Google Scholar
  7. 7.
    R. A. Vandermeer and P. Gordon, “Recovery and Recrystallization of Metals” (Interscience Publ., New York, 1963) p. 211.Google Scholar
  8. 8.
    E. C. W. Perryman, in “Creep and Recovery” (ASM, Cleveland, 1957) p. 111.Google Scholar
  9. 9.
    W. G. Truckner and D. E. Mikkola, Metall. Trans. 8A (1977) 45.Google Scholar
  10. 10.
    J. Friedel, “Dislocations” (Pergamon, New York, 1964) p. 275.Google Scholar
  11. 11.
    R. W. Cahn, “Physical Metallurgy” (North-Holland Publ., Amsterdam, 1965) p. 925.Google Scholar
  12. 12.
    F. Kirch, doctoral dissertation, RWTH Aachen (1970).Google Scholar
  13. 13.
    H. Mecking and G. Gottstein, in “Recrystallization of Metallic Materials” 2nd edn, edited by F. Haessner (Dr. Riederer-Verlag, Stuttgart, 1978) p. 195.Google Scholar
  14. 14.
    U. F. Kocks, Acta Metall. 6 (1958) 85.Google Scholar
  15. 15.
    H. Mecking and U. F. Kocks, ibid. 29 (1981) 1865.Google Scholar
  16. 16.
    T. Hasegawa, T. Yakou and U. F. Kocks, ibid. 30 (1982) 235.Google Scholar
  17. 17.
    T. V. Cherian, P. Pietrowsky and J. E. Dorn, Metall. Trans. 185 (1949) 948.Google Scholar
  18. 18.
    T. H. Alden, Metall. Trans. 4 (1973) 1047.Google Scholar
  19. 19.
    G. Gottstein, D. Zabardjadi and H. Mecking, Met. Sci. 13 (1979) 223.Google Scholar
  20. 20.
    P. J. T. Stuitje and G. Gottstein, Z. Metallkd. 71 (1980) 279.Google Scholar
  21. 21.
    G. Gottstein and U. F. Kocks, Acta Metall. 31 (1983) 175.Google Scholar
  22. 22.
    G. Gottstein, J. Bewerunge, H. Mecking and H. Wollenberger, ibid. 23 (1975) 641.Google Scholar
  23. 23.
    T. Sakai, private communication (1982).Google Scholar
  24. 24.
    G. Van Drunen and S. Saimoto, Acta Metall. 19 (1971) 213.Google Scholar
  25. 25.
    Idem, Metall. Trans. 10A (1979) 783.Google Scholar
  26. 26.
    F. Prinz, A. S. Argon and W. C. Moffatt, Acta Metall. 30 (1982) 821.Google Scholar
  27. 27.
    P. Haasen and A. Kelly, Acta Metall. 5 (1957) 192.Google Scholar
  28. 28.
    H. J. McQueen and J. J. Jonas, in “Treatise in Materials Science and Technology” Vol. 6, edited by R. J. Arsenault (Academic Press, New York, 1975) p. 393.Google Scholar
  29. 29.
    W. Blum, doctoral dissertation, University Erlangen (1978).Google Scholar
  30. 30.
    P. Karduck, G. Gottstein and H. Mecking, to be published.Google Scholar
  31. 31.
    A. Wantzen, doctoral dissertation, TU Hamburg-Harburg (1982).Google Scholar
  32. 32.
    G. Thomas and M. J. Goringe, “Transmission Electron Microscopy of Materials” (Wiley, New York, 1979).Google Scholar
  33. 33.
    T. Hasegawa, S. Karashima and R. Hasegawa, Metall. Trans. 2 (1971) 1449.Google Scholar
  34. 34.
    P. Karduck, doctoral dissertation, RWTH Aachen (1981).Google Scholar
  35. 35.
    H. J. McQueen, Trans. Jpn. Inst. Met. Met. 9 (Suppl., 1968) 170.Google Scholar
  36. 36.
    J. P. A. Immarigeon and J. J. Jonas, Acta Metall. 19 (1971) 1053.Google Scholar
  37. 37.
    W. B. Hutchinson and R. K. Ray, Phil. Mag. 28 (1973) 953.Google Scholar
  38. 38.
    D. Caillard and J. L. Martin, in “Creep and Fracture of Engineering Materials and Structures”, edited by B. Wilshire (Pineridge Press, Swansea, 1981) p. 17.Google Scholar
  39. 39.
    G. Gottstein, submitted to Met. Sci. Google Scholar
  40. 40.
    A. Wantzen and H. Mecking, unpublished research, (TU Hamburg-Harburg).Google Scholar

Copyright information

© Chapman and Hall Ltd. 1983

Authors and Affiliations

  • R. E. Cook
    • 1
  • G. Gottstein
    • 1
  • U. F. Kocks
    • 1
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations