Environmental Monitoring and Assessment

, Volume 38, Issue 1, pp 11–23 | Cite as

A passive sampler for hydrogen sulfide

  • D. Shooter
  • S. F. Watts
  • A. J. Hayes


The silver nitrate/fluorescein mercuric acetate fluorimetric method for the measurement of atmospheric hydrogen sulfide has been adapted to passive sampling. Standard samplers have been tested and used in both indoor and outdoor environments. Sampler performance was not dependent on construction materials or sunlight intensity and gave similar results to active sampling. Two case studies were carried out, one in the Horniman Museum and its associated storage and study building, London, UK, and the other in the vicinity of a pulp and paper mill and geothermal area North Island, New Zealand. The detection limit of the samplers (50 ppt average for a one-week exposure) provides the opportunity to make measurements in a variety of locations provided exposure times are sufficiently long, i.e., up to one month in areas of low hydrogen sulfide concentration.


Sulfide Standard Sampler Hydrogen Sulfide Construction Material Active Sampling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. F., Farwell, S. O., Pack, M. R. and Bamesberger, W. L.: 1979, ‘Preliminary measurements of biogenic sulfur-containing gas emissions from soils’, J. Air Pollut. Contr. Ass. 29, 380–382.Google Scholar
  2. Almy, H. L.: 1925, ‘A method for the estimation of hydrogen sulfide in proteinaceous food products’ J. Amer. Chem. Soc. 47, 1381–1390.Google Scholar
  3. Andreae, M. O. and Andreae, T. W.: 1988, ‘The cycle of biogenic sulfur compounds over the Amazon Basin 1. Dry season’, J. Geophys. Res. 93(D2), 1487–1497.Google Scholar
  4. Aneja, V. P.: 1986, ‘Characterisation of emissions of biogenic atmospheric hydrogen sulfide’, Tellus 38B, 81–86.Google Scholar
  5. Aneja, V. P., Overton, J. H. and Aneja, A. P.: 1981, ‘Emission survey of biogenic sulfur flux from terrestrial surfaces’, J. Air Pollut. Contr. Assoc. 31, 256–258.Google Scholar
  6. Axelrod, H. D., Cary, J. H., Bonelli, J. E. and Lodge Jr, J. P.: 1969, ‘Fluorescence determination of sub-parts per billion hydrogen sulfide in the atmosphere’, Anal. Chem. 41, 1856–1858.Google Scholar
  7. Balasubramanian, N. and Kumar, B. S. M.: 1990, ‘Extraction — spectrophotometric determination of hydrogen sulfide’, Analyst 115, 859–863.Google Scholar
  8. Bandy, A. R., Maroulis, P. J. and Wilner, L. A.: 1982, ‘Estimates of the fluxes of NO2, SO2, H2S, CS2 and OCS from Mt. St. Helens deduced from in situ plume concentration measurements’, Geophys. Res. Lett. 9, 1097–1100.Google Scholar
  9. Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J. and Stoiber, R. E.: 1992, ‘Sulfur emissions to the atmosphere from natural sources’, J. Atmos. Chem. 14, 315–337.Google Scholar
  10. Bhatia, S. P.: 1988, ‘Laboratory testing of selected hydrogen sulfide gas detection tubes’, Pulp and Paper Canada, 89, 183–188.Google Scholar
  11. Brown, K. A. and Bell, J. N. B.: 1986, ‘Vegetation — the missing sink in the global cycle of carbonyl sulfide’, Atmospheric Environment 20, 537–540.Google Scholar
  12. Brown, R. H.: 1993, ‘The use of diffusive samplers for monitoring of ambient air’, Pure Appl. Chem. 65, 1859–1874.Google Scholar
  13. Cooper, D. J. and Saltzman, E. S.: 1987, ‘Uptake of carbonyl sulfide by silver nitrate impregnated filters: Implications for the measurement of low level atmospheric H2S’ Geophys. Res. Letters 14, 206–209.Google Scholar
  14. Cooper, W. J., Cooper, D. J., Saltzman, E. S., de Mello, W. Z., Savoie, D. L., Zika, R. G. and Prospero, J. M.: 1987, ‘Emissions of biogenic sulfur compounds from several wetland soils in Florida’, Atmospheric Environment 21, 1491–1495.Google Scholar
  15. Cope, D. M.: 1981, The effects of geothermal surful gases on pinus radiata plantations. PhD thesis, The University of Auckland.Google Scholar
  16. D'Amore, F. and Panichi, C.: 1980, ‘Evaluation of deep temperatures of hydrothermal systems by a new gas geothermometer’, Geochima Cosmochim Acta 44, 549–556.Google Scholar
  17. Delmas, R., Baudet, J., Servant, J. and Baziard, Y.: 1980, ‘Emissions and concentrations of hydrogen sulfide in the air of the tropical forest of the Ivory Coast and temperate regions in France’, J. Geophys. Res. 85(C8), 4468–4474.Google Scholar
  18. Delmas, R. and Servant, J.: 1983, ‘Atmospheric balance of sulfur above an equitorial forest’, Tellus 35B, 110–120.Google Scholar
  19. Farwell, S. O., Chatham, W. H. and Barinaga, C. J.: 1987, ‘Performance characterization and optimisation of the AgNO3-filter/FMA fluorimetric method for atmospheric H2S measurements’, J. Air Pollut. Assoc. Am. 37, 1052–1059.Google Scholar
  20. Fried, A., Henry, B., Ragazzi, R. A., Merrick, M., Stokes, J., Pyzdrowski, T. and Sams, R.: 1992, ‘Measurements of carbonyl sulfide in automotive emissions and an assessment of its importance to the global sulfur cycle’, J. Geophys. Res. 97(D13), 14,621–14 634.Google Scholar
  21. Furr, A. K.: 1990, CRC Handbook of Laboratory Safety (3 ed), CRC Press.Google Scholar
  22. Gair, A. J., Penkett, S. A. and Oyola: 1991, ‘Development of a simple passive technique for the determination of nitrogen dioxide in remote continental locations’, Atmospheric Environment 25A, 1927–1939.Google Scholar
  23. Gibson, J. A. E., Jones, G. B., Ivey, J. P. and Curran, M. A. J.: 1994, ‘Dimethylsulfide biogeochemistry: Australian research’, Chemistry in Australia, 129–131.Google Scholar
  24. Goldan, P. D., Kuster, W. C., Albritton, D. L. and Fehsenfeld, F. C.: 1987, ‘The measurement of natural sulfur emissions from soils and vegetation: three sites in the eastern United States revisited’, J. Atmos. Chem. 5, 439–467.Google Scholar
  25. Gudzhedzhiani, E. N.: 1978, ‘Effective coefficient of diffusion of acid gases in cement material’, Soobsheh. Akad. Nauk Gruz. SSR 89, 165–168. (Chemical Abstracts 89: 10908d).Google Scholar
  26. Hayes, E. T., Ataman, O. Y., Karagozler, A. E., Zhang, Y. L., Hautman, D. P., Emerich, R. T., Ataman, A. G., Zimmer, H. and Mark Jr, H. B.: 1990, ‘Dosimeter for hydrogen sulfide by paper luminescence’, Microchemical J. 41, 98–105.Google Scholar
  27. Jaeschke, W.: 1978, ‘New methods for the analysis of SO2 and H2S in remote areas and their application to the atmosphere’, Atmospheric Environment 12, 715–621.Google Scholar
  28. Jaeschke, W. and Herrmann, J.: 1981, ‘Measurement of H2S in the atmosphere’, Intern. J. Environ. Anal. Chem. 10, 107–120.Google Scholar
  29. Jorgenson, B. B. and Okholm-Hansen, B.: 1985, ‘Emissions of biogenic sulfur gases from a Danish estuary’, Atmospheric Environment 19, 1737–1749.Google Scholar
  30. Kodosky, L. G., Motyka, R. J. and Symonds, R. B.: 1991, ‘Fumarolic emissions from Mount St. Augustine, Alaska: 1979–1984 degassing tends, volatile sources and their possible role in eruptive style’, Bull. Volcanol. 53, 381–394.Google Scholar
  31. Koh, T., Miura, Y., Yamamuro, N. and Takaki, T.: 1990, ‘Spectroscopic determination of trace amounts of sulphide and hydrogen sulphide by formation of thiocyanate’, Analyst. 115, 1133–1137.Google Scholar
  32. LaRue, R., Ataman, O. Y., Hautman, D. P., Gerhardt, G., Zimmer, H. and Mark Jr, H. B.: 1987, ‘Sampler-sensor for preconcentration and quantitation of atmospheric hydrogen sulfide’ Amer. Chem. Soc. 59, 2313–2316.Google Scholar
  33. Leggett, D. J., Chen, N. H. and Mahadevappa, D. S.: 1981, ‘Flow injection method for sulfide determination by the methylene blue method’, Analytica Chimica Acta 128, 163–168.Google Scholar
  34. Moller, D.: 1984a, ‘On the global natural sulfur emission’ Atmospheric Environment 18, 29–39.Google Scholar
  35. Moller, D.: 1984b, ‘Estimation of the global man-made sulfur emission’, Atmospheric Environment, 18, 19–27.Google Scholar
  36. Monn, C. and Hangartner, M.: 1990, ‘Passive sampling for ozone’, J. Air Waste Manage. Assoc. 40, 357–362.Google Scholar
  37. Natusch, D. F. S., Klonis, H, B., Axelrod, H. D., Teck, R. J., and Lodge Jr., J. P.: 1972, ‘Sensitive method for the measurement of atmospheric hydrogen sulfide’, Anal. Chem. 44, 2067–2070.Google Scholar
  38. Natusch, D. F. S., Sewell, J. R. and Tanner, R. L.: 1974, ‘Determination of hydrogen sulfide in air — an assessment of impregnated paper tape methods’, Anal. Chem. 46, 410–415.Google Scholar
  39. Pal, T., Ganguly, A. and Maity, D. S.: 1986, ‘Use of a silver-gelatin complex for the microdetermination of hydrogen sulphide in the atmosphere’, Analyst 111, 691–693.Google Scholar
  40. Pope, D., Gibbens, H. R. and Moss, R. L.: 1968, ‘The tarnishing of Ag at naturally-occurring H2S and SO2 levels’, Corrosion Science 8, 883–887.Google Scholar
  41. Servant, J. and Delapart, M.: 1982, ‘Daily variations of the H2S content in the atmospheric air at ground-level in France’, Atmospheric Environment 16, 1047–1052.Google Scholar
  42. Shooter, D.: 1993, ‘Nitrogen dioxide and its determination in the atmosphere’, J. Chem. Ed. 70, A133-A140.Google Scholar
  43. Siegel, S. M., Penny, P., Siegel, B. Z. and Penny, D.: 1986, ‘Atmospheric hydrogen sulfide levels at the Surfur Bay wildlife area, Lake Rotorua, New Zealand’, Water, Air and Soil Pollution 28, 385–391.Google Scholar
  44. Steudler, P. A. and Peterson, B. J.: 1985, ‘Annual cycle of gaseous sulfur emissions from a New England Spartina alterniflora marsh’, Atmospheric Environment 19, 1411–1416.Google Scholar
  45. Sze, S. Z. E. and Ko, M. K. W.: 1980, ‘Photochemistry of COS, CS2, CH3SCH3 and H2S: Implications for the atmospheric sulfur cycle’, Atmospheric Environment 14, 1223–1239.Google Scholar
  46. Turner, S. M. and Liss, P. S.: 1985, ‘Measurement of various sulfur gases in a coastal marine environment’, J. Atmos. Chem. 2, 223–232.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • D. Shooter
    • 1
  • S. F. Watts
    • 2
    • 1
  • A. J. Hayes
    • 1
  1. 1.Chemistry DepartmentThe University of AucklandAucklandNew Zealand
  2. 2.School of Biological and Molecular SciencesOxford Brookes University, HeadingtonOxfordU.K.

Personalised recommendations