Skip to main content
Log in

The transverse coefficient of thermal expansion of a unidirectional composite

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various analytical models of the effective thermal expansion coefficients of unidirectional fibre-reinforced composite materials predict for certain fibre-matrix combinations an increase in the transverse coefficient of thermal expansion over that of its constituents at low fibre volume content. This effect is especially noticeable if the composite is fabricated with fibres of high modulus and low thermal expansion coefficient in matrices of low modulus and high thermal expansion coefficient. An experimental investigation was therefore conducted to study this behaviour in Textron fibre (SCS-6)-reinforced Hercules 3501 -6 epoxy matrix. Numerical calculations for this material system have shown that increases of the order of 20% over the matrix expansion coefficient is possible for fibre volume fraction in the range 3%–4%. Experimental measurements of the effective thermal expansion coefficients are seen to be in favourable agreement with the theoretical predictions. A parametric study is also undertaken to examine the influence of constituent properties on the effective composite behaviour. It is shown that the axial restraint of the fibre is responsible for a peak in the behaviour of the transverse expansion coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Hashin, NASA CR-1974 (1972).

  2. R. A. Schapery, J. Compos. Mater. 2 (1968) 380.

    Google Scholar 

  3. B. W. Rosen, Proc. Roy. Soc. Lond. Ser. A 319 (1970) 79.

    Google Scholar 

  4. C. C. Chamis and G. P. Sendeckyj, J. Compos. Mater. 2 (1968) 332.

    Google Scholar 

  5. D. K. Hale, J. Mater. Sci. 11 (1976) 2105.

    Google Scholar 

  6. T. Ishikawa, K. Koyama and S. Kobayashi, J. Compos. Mater. 12 (1978) 153.

    Google Scholar 

  7. W. Schneider, Kunstoffe 61 (1971) 273 (in German).

    Google Scholar 

  8. S. Nomura and T. W. Chou, Int. J. Engng Sci. 19 (1981) 1.

    Google Scholar 

  9. Y. Takayo and M. Taya, ASME J. Appl. Mech. 52 (1985) 806.

    Google Scholar 

  10. Idem., J. Compos. Mater. 21 (1987) 140.

    Google Scholar 

  11. C. Hsueh and P. F. Becher, J. Amer Ceram. Soc. 71 (1988) C-438.

    Google Scholar 

  12. W. Schneider, Kunststoffe 63 (1973) 929 (in German).

    Google Scholar 

  13. B. Yates, M. J. Overy, J. P. Sargent, B. A. McCalla, D. M. Kingston-Lee, L. N. Philips and K. F. Rogers, J. Mater. Sci. 13 (1978) 433.

    Google Scholar 

  14. D. E. Bowles and S. S. Tompkins, J. Compos. Mater. 23 (1989) 370.

    Google Scholar 

  15. N. J. Pagano and G. P. Tandon, Compos. Sci. Technol. 31 (1988) 273.

    Google Scholar 

  16. B. W. Rosen and Z. Hashin, Int. J. Engng Sci. 8 (1970) 157.

    Google Scholar 

  17. V. M. Levin, Mech. Solids 2 (1967) 58.

    Google Scholar 

  18. N. J. Pagano, J. Compos. Mater. 8 (1974) 310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tandon, G.P., Chatterjee, A. The transverse coefficient of thermal expansion of a unidirectional composite. J Mater Sci 26, 2759–2764 (1991). https://doi.org/10.1007/BF00545565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00545565

Keywords

Navigation