Journal of Materials Science

, Volume 27, Issue 14, pp 3835–3842 | Cite as

Microstructural analysis of isothermally exposed Ti/SiC metal matrix composites

  • I. W. Hall
  • J. -L. Lirn
  • Y. Lepetitcorps
  • K. Bilba


Specimens of diffusion-bonded titanium metal matrix composites have been subjected to thermal exposure treatments and examined principally by transmission electron microscopy. The fibres investigated were SCS-6 and Sigma. The fibre/matrix reaction layers have been shown to consist of titanium carbide and two titanium silicides. The reaction proceeds by the initial formation of a layer of TiC followed by a layer of mixed silicides, Ti5Si4 and Ti5Si3. Extensive porosity is generated during the reaction and this prevents the formation of a completely protective interfacial layer.


Polymer Electron Microscopy Titanium Porosity Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Kieschke, R. Somekh and T. W. Clyne, “Proceedings of the 3rd European Conference on Composite Materials” edited by A. R. Bunsell, P. Lamicq and A. Massiah, Bordeaux 1989 (Elsevier, London, 1989) p. 265.Google Scholar
  2. 2.
    C. G. Rhodes and R. A. Spurling, ASTM STP 864 (ASTM, Philadelphia, PA, 1985) p. 585.Google Scholar
  3. 3.
    H. J. Dudek, L. A. Larson and R. Browning, Surf. Interface Anal. 6 (1984) 274.CrossRefGoogle Scholar
  4. 4.
    W. J. Whatley and F. E. Wawner, J. Mater. Sci. Lett. 4 (1985) 173.CrossRefGoogle Scholar
  5. 5.
    D. B. Gundel and F. E. Wawner, in “14th Annual Conference on Composite Materials and Advanced Structures”, January 1990, Cocoa Beach, FL.Google Scholar
  6. 6.
    B. A. Lerch and D. R. Hull, NASA Tech. Mem., TM-100938, 1988.Google Scholar
  7. 7.
    I. W. Hall, J.-L. Lirn and J. Rizza, J. Mater. Sci. Lett., 10 (1991) 236.Google Scholar
  8. 8.
    P. Martineau, R. Pailler, M. Lahaye and R. Naslain, J. Mater. Sci. 19 (1984) 2749.CrossRefGoogle Scholar
  9. 9.
    J. L. Murray (ed.), “Binary Phase Diagrams of Ti Alloys” (ASM International, Metals Park, OH, 1987).Google Scholar
  10. 10.
    F. J. J. Loo and G. F. Bastin, Metall. Trans. 20A (1989) 403.CrossRefGoogle Scholar
  11. 11.
    S. K. Choi, M. Chandrasekaran and M. J. Brabers, J. Mater. Sci. 25 (1990) 1957.CrossRefGoogle Scholar
  12. 12.
    E. Heikinheimo, J. Kivilahti and M. Pajunen, in “Microbeam Analysis”, edited by D. E. Newbury (San Francisco Press, CA, 1988) p. 509.Google Scholar
  13. 13.
    C. E. Brukl, in “Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems”, Part II, Vol. VII, AFML-TR-65-2 (US Department of Commerce, Springfield, VA, 1965) p. 425.CrossRefGoogle Scholar
  14. 14.
    D. G. Konitzer and M. H. Loretto, Acta. Metall. 37 (1989) 397.CrossRefGoogle Scholar
  15. 15.
    Idem., Mater. Sci. Engng A107 (1989) 217.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • I. W. Hall
    • 1
  • J. -L. Lirn
    • 1
  • Y. Lepetitcorps
    • 2
  • K. Bilba
    • 2
  1. 1.Materials Science ProgramUniversity of DelawareNewarkUSA
  2. 2.Laboratoire de Chimie du Solide du CNRSUniversité de Bordeaux ITalence cedexFrance

Personalised recommendations