Fibre Chemistry

, Volume 21, Issue 2, pp 162–165 | Cite as

Determination of the temperature of a moving yarn

  • N. P. Osipov
  • T. G. Suris
  • Yu. L. Gracheva
  • V. S. Matveev
  • V. M. Shchetinin
  • V. V. Gvozdev
Manufacturing Control


A mathematical model has been proposed for the process of heat-exchange between yarn and heating chamber which permits one, with reasonable accuracy, to describe the yarn temperature distribution over the length of the heater and beyond its limits. This model affords the possibility of calculating the amount of heat carried off by the yarn from the heating chamber and to estimate heat losses into the environment, and, consequently, to select the most economical heater.

By connecting up the dynamics of yarn heating with yarn properties, the mathematical model developed permits one to calculate the optimum temperature profile in a heating chamber. Using this model, one can transfer the optimum conditions for heat-stretching yarns to other temperature-time levels.


Polymer Mathematical Model Organic Chemistry Optimum Condition Temperature Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. S. Andronov, Yu. I. Surov, S. Ya. Mezhirova, and D. V. Fil'bert, Khim. Volokna, No. 3, 20–22 (1977).Google Scholar
  2. 2.
    R. L. Rabkin, Khim. Volokna, No. 4, 23–25 (1972); No. 6, 65–67 (1975).Google Scholar
  3. 3.
    R. Bayruitehr, Faserf. Textilt., No. 11, 483–489 (1974).Google Scholar
  4. 4.
    L. A. Ivanov, Yu. V. Vasil'ev, and N. N. Vasil'eva, Khim. Volokna, No. 4, 68–69 (1973).Google Scholar
  5. 5.
    Yu. I. Surov, Candidate's Dissertation, VNIISV, Kalinin (1975).Google Scholar
  6. 6.
    A. V. Bratukhin, A. N. Burkov, and V. F. Isakov, Khim. Volokna, No. 6, 32–33 (1976).Google Scholar
  7. 7.
    Inventor's certificate 453590, 511524 (1975) (USSR).Google Scholar
  8. 8.
    M. V. Kulakov and B. I. Makarov, Measurement of the Surface Temperature of Solids [in Russian], Énergiya, Moscow (1979), p. 96.Google Scholar
  9. 9.
    V. N. Evdokimov and P. N. Samosyuk, in: Coll. of Reports of the All-Union Scientific-Technical Conference “Development of Advanced Equipment for the Manufacture of Man-made Fibres,” Chernigov (1982), p. 196.Google Scholar
  10. 10.
    M. A. Mikheev and N. M. Mikheeva, Bases of Heat-transfer [in Russian], Énergiya, Moscow (1973), p. 320.Google Scholar
  11. 11.
    V. A. Grigor'ev and V. N. Zorin, editors, Heat- and Mass-exchange. Thermotechnical Experimentation. A Handbook [in Russian], Énergiya, Moscow (1982), p. 510.Google Scholar
  12. 12.
    P. I. Romanovskii. Fourier Series. Field Theory. Analytical and Special Functions. Laplace Transformations [in Russian], Nauka, Moscow (1980), p. 336.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • N. P. Osipov
  • T. G. Suris
  • Yu. L. Gracheva
  • V. S. Matveev
  • V. M. Shchetinin
  • V. V. Gvozdev

There are no affiliations available

Personalised recommendations