Advertisement

Journal of Materials Science

, Volume 20, Issue 9, pp 3375–3384 | Cite as

Scanning electron microscopy studies on failure of filled polychloroprene

  • D. K. Setua
  • S. K. De
Papers

Abstract

Scanning electron microscopy (SEM) studies of the effect of particulate fillers (silica and carbon black) and short fibres (silk) on the fracture surface morphology of polychloroprene vulcanizates failed under tension, tear, abrasion and flexing have been made. It has been observed that the type of failure testing and the nature of the filler cause drastic changes in the fractographs. An attempt has been made to correlate these changes with the strength of polychloroprene vulcanizates.

Keywords

Fracture Surface Scanning Electron Micrograph Short Fibre Silk Fibre Rubber Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. K. Setua, S. K. Chakraborty, S. K. De and B. K. Dhindaw, J. Scanning Electron Micros. 3 (1982) 973.Google Scholar
  2. 2.
    N. M. Mathew, A. K. Bhowmick, B. K. Dhindaw and S. K. De, J. Mater. Sci. 17 (1982) 2594.CrossRefGoogle Scholar
  3. 3.
    N. M. Mathew, A. K. Bhowmick and S. K. De, Rubber Chem. Technol. 55 (1982) 51.Google Scholar
  4. 4.
    D. K. Setua and S. K. De, J. Mater. Sci. 18 (1983) 847.CrossRefGoogle Scholar
  5. 5.
    N. M. Mathew and S. K. De, Int. J. Fatigue January (1983) 23.Google Scholar
  6. 6.
    Idem, J. Mater. Sci. 18 (1983) 515.CrossRefGoogle Scholar
  7. 7.
    D. K. Setua and S. K. De, Rubber Chem. Technol. 56 (1983) 808.Google Scholar
  8. 8.
    Idem, J. Mater. Sci. 19 (1984) 983.CrossRefGoogle Scholar
  9. 9.
    S. K. Chakraborty, D. K. Setua and S. K. De, Rubber Chem. Technol. 55 (1982) 286.Google Scholar
  10. 10.
    M. P. Wagner, ibid. 49 (1976) 703.Google Scholar
  11. 11.
    Idem, Rubber World 164 (1971) 46.Google Scholar
  12. 12.
    M. Q. Fetterman, Rubber Chem. Technol. 46 (1973) 927.Google Scholar
  13. 13.
    P. K. Pal and S. K. De, ibid. 55 (1983) 1370.Google Scholar
  14. 14.
    B. B. Boonstra, Polymer 20 (1979) 691.CrossRefGoogle Scholar
  15. 15.
    G. Kraus, “Reinforcement of Elastomers” (Interscience, Wiley, New York, 1965) p. 339.Google Scholar
  16. 16.
    A. I. Medalia, Proceedings of International Conference on “Structure property relations of rubber”, Kharagpur, India, 20–31 December, 1980 (Indian Institute of Technology, Kharagpur, 1980).Google Scholar
  17. 17.
    E. M. Dannenberg and J. J. Brennan, Rubber Chem. Technol. 39 (1966) 597.Google Scholar
  18. 18.
    A Voet, J. C. Morawski and J. B. Donnet, ibid. 50 (1977) 342.Google Scholar
  19. 19.
    A. Voet, J. Polym. Sci. Macromolecular Rev. 15 (1980) 327.CrossRefGoogle Scholar
  20. 20.
    P. R. Johnson, Rubber Chem. Technol. 49 (1976) 650.Google Scholar
  21. 21.
    V. M. Murty and S. K. De, J. Appl. Polym. Sci. 27 (1982) 4611.CrossRefGoogle Scholar
  22. 22.
    A. Y. Coran, P. Hamed and L. A. Goettler, Rubber Chem. Technol. 49 (1976) 1167.Google Scholar
  23. 23.
    A. Y. Coran, K. Boustany and P. Hamed, J. Appl. Polym. Sci. 15 (1975) 2471.CrossRefGoogle Scholar
  24. 24.
    N. M. Mathew and S. K. De, Polymer 23 (1982) 632.CrossRefGoogle Scholar
  25. 25.
    E. Southern and A. G. Thomas, Rubber Chem. Technol. 52 (1979) 1008.Google Scholar

Copyright information

© Chapman and Hall Ltd 1985

Authors and Affiliations

  • D. K. Setua
    • 1
  • S. K. De
    • 1
  1. 1.Rubber Technology CentreIndian Institute of TechnologyKharagpurIndia

Personalised recommendations