Skip to main content
Log in

Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is proposed that the difficulties encountered with the meaning of subcritical crack growth arose from a misunderstanding of the Griffith equation. This equation is G=2γ for an equilibrium crack (stable or unstable) where γ is the intrinsic surface energy. When G>2γ the crack has a velocity v depending on the crack extension force G−2γ, even in a vacuum, and the following equation, well verified for adherence of elastomers, G−2γ=2γφ T(v) where φ T(v) is related to viscoelastic losses or internal friction at the crack tip, is generalized to other materials. At a critical speed v c, dφ/dv becomes negative; as a negative branch cannot be observed the velocity jumps to high values on a second positive branch, so that G=G c is a criterion for crack speed discontinuity, not the Griffith criterion. The multiplicative factor 2γ on the right-hand side accounts for the shift of the v-K curves with environment. No stress corrosion is needed to explain subcritical crack growth. Subcritical crack growth in glasses and ceramics and velocity jump in brittle polymers are shown to agree with this proposal. This model can also explain stick-slip motion when a mean velocity is imposed in the negative branch. Occurrence of velocity jump or stick-slip depends on the geometry tested and the stiffness of the apparatus. A second kind of stick-slip associated with cavitation in liquid-filled cracks is discussed. When the surrounding medium can reach the crack tip and reduce the surface energy, even at the critical speed v c, the critical strain energy release rate G c is reduced in the same proportion as γ, and a loading which would have given subcritical growth will give a catastrophic failure. Reduction of surface energy in the Rehbinder effect and in embrittlement by segregation is discussed. Finally, the evolution of ideas concerning the Irwin-Orowan formula and fracture toughness is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Maugis, “Unilateral problems in structural analysis”, CISM courses and lectures series, edited by G. Del Piero and F. Maceri (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  2. D. Maugis and M. Barquins, J. Phys. D: Appl. Phys. 11 (1978) 1989.

    Google Scholar 

  3. Idem, “Adhesion and adsorption of polymers”, Part A, edited by L. H. Lee (Plenum Press, New York, 1980) p. 203.

    Google Scholar 

  4. M. Barquins and D. Maugis, J. Mec. Théor. Appl. 1 (1982) 333.

    Google Scholar 

  5. D. Maugis and M. Barquins, J. Phys. D: Appl. Phys. 16 (1983) 1843.

    Google Scholar 

  6. K. L. Johnson, K. Kendall and D. Roberts, Proc. R. Soc. A324 (1971) 301.

    Google Scholar 

  7. D. Maugis, “Microscopic aspects of adhesion and lubrication”, edited by J. M. Georges (Elsevier, Amsterdam, 1982) p. 221.

    Google Scholar 

  8. G. Gurney and J. Hunt, Proc. R. Soc. A299 (1967) 509.

    Google Scholar 

  9. I. B. Obreimov, ibid. A127 (1930) 290.

    Google Scholar 

  10. F. C. Roesler, ibid. B69 (1956) 981.

    Google Scholar 

  11. J. D. Ferry, “Viscoelastic properties of polymers” (Wiley, New York, 1970) p. 292.

    Google Scholar 

  12. D. H. Kaelble, J. Colloid Sci. 19 (1964) 413.

    Google Scholar 

  13. Idem, J. Adhes. 1 (1969) 102.

    CAS  Google Scholar 

  14. A. N. Gent and R. P. Petrich, Proc. R. Soc. A310 (1969) 433.

    Google Scholar 

  15. A. N. Gent, J. Polym. Sci. A2 9 (1971) 283.

    CAS  Google Scholar 

  16. A. N. Gent and A. J. Kinloch, ibid. 9 (1971) 659.

    CAS  Google Scholar 

  17. A. N. Gent and J. Schultz, J. Adhes. 3 (1972) 281.

    CAS  Google Scholar 

  18. E. H. Andrews and A. J. Kinloch, Proc. R. Soc. A332 (1973) 385.

    Google Scholar 

  19. K. Kendall, J. Phys. D. Appl. Phys. 5 (1973) 1782.

    Google Scholar 

  20. A. D. Roberts, Rub. Chem. Techn. 52 (1979) 23.

    CAS  Google Scholar 

  21. M. Barquins, Thèse d'Etat University of Paris, 1980.

  22. A. Carré and J. Schultz, J. Adhes. in press.

  23. A. D. Roberts and A. G. Thomas, Wear 33 (1975) 45.

    CAS  Google Scholar 

  24. M. Barquins and D. Maugis, J. Adhes. 13 (1981) 53.

    CAS  Google Scholar 

  25. J. W. Hutchinson and P. C. Paris, ASTM STP 668 (American Society for Testing and Materials, Philadelphia, 1979) p. 37.

    Google Scholar 

  26. M. Barquins, J. Appl. Polym. 28 (1983) 2647.

    CAS  Google Scholar 

  27. Idem, Int. J. Adhesion and Adhesives 3 (1983) 71.

    CAS  Google Scholar 

  28. G. Ramond, M. Pastor, D. Maugis and M. Barquins, Cah. du Gr. Fr. de Rheol. in press.

  29. R. A. Schapery, Int. J. Fract. 11 (1975) 141.

    CAS  Google Scholar 

  30. R. M. Christensen, ibid. 15 (1979) 3.

    CAS  Google Scholar 

  31. R. M. Christensen and E. M. Wu, Eng. Fract. Mech. 14 (1981) 215.

    Google Scholar 

  32. M. Dahan and E. Znaty, C.R. Acad. Sci. Paris 292 Ser. II (1981) 481.

    Google Scholar 

  33. J. A. Greenwood and K. L. Johnson, Philos. Mag. A43 (1981) 697.

    Google Scholar 

  34. J. L. Gardon, J. Appl. Polym. Sci. 7 (1963) 625.

    CAS  Google Scholar 

  35. J. R. Rice, J. Mech. Phys. Sol. 26 (1978) 61.

    CAS  Google Scholar 

  36. P. Glansdorff and I. Prigogine, “Structure, stabilité et fluctuations” (Masson, Paris, 1971) p. 80.

    Google Scholar 

  37. L. Grenet, Bull. Soc. Encour. Ind. Nat. 4 (1899) 838.

    Google Scholar 

  38. L. H. Milligan, J. Soc. Glass Technol. 13 (1929) 351.

    CAS  Google Scholar 

  39. A. J. Holland and W. E. S. Turner, Glass Technol. 24 (1940) 46.

    CAS  Google Scholar 

  40. T. C. Baker and F. W. Preston, J. Appl. Phys. 17 (1946) 170.

    CAS  Google Scholar 

  41. S. Wiederhorn, “Environment sensitive mechanical behaviour”, edited by A. R. C. Westwood and N. S. Stoloff (Gordon and Breach, New York, 1966) p. 293.

    Google Scholar 

  42. Idem, J. Amer. Ceram. Soc. 50 (1967) 407.

    CAS  Google Scholar 

  43. Idem, Int. J. Fract. 4 (1968) 171.

    Google Scholar 

  44. S. M. Wiederhorn and L. H. Bolz, J. Amer. Ceram. Soc. 53 (1970) 543.

    CAS  Google Scholar 

  45. A. G. Evans, J. Mater. Sci. 7 (1972) 1137.

    CAS  Google Scholar 

  46. R. J. Charles, J. Appl. Phys. 29 (1958) 1657.

    CAS  Google Scholar 

  47. V. P. Pukh, S. A. Laterner and V. N. Ingal, Sov. Phys. Sol. State 12 (1970) 881.

    Google Scholar 

  48. S. M. Wiederhorn, H. Johnson, A. M. Diness and A. H. Heuer, J. Amer. Ceram. Soc. 57 (1974) 336.

    CAS  Google Scholar 

  49. S. M. Wiederhorn, “Fracture mechanics of ceramics” Vol. 4, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 549.

    Google Scholar 

  50. S. W. Freiman, “Fracture mechanics of ceramics”, Vol. 6, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) p. 27.

    Google Scholar 

  51. G. W. Weidman and D. G. Holloway, Phys. Chem. Classes 15 (1974) 116.

    Google Scholar 

  52. S. M. Wiederhorn, “Fracture mechanics of ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 613.

    Google Scholar 

  53. A. G. Evans, Int. J. Fract. 10 (1974) 251.

    CAS  Google Scholar 

  54. D. P. Williams and A. G. Evans, J. Test. Eval. 1 (1973) 264.

    CAS  Google Scholar 

  55. F. Champomier and J. C. Metras, Verres Refract. 33 (1979) 858.

    CAS  Google Scholar 

  56. S. Sakaguchi, Y. Sawaki, Y. Abe and T. Kawasaki, J. Mater. Sci. 17 (1982) 2878.

    CAS  Google Scholar 

  57. S. M. Wiederhorn, J. Amer. Ceram. Soc. 52 (1969) 99.

    CAS  Google Scholar 

  58. S. W. Freiman, ibid. 57 (1974) 350.

    CAS  Google Scholar 

  59. S. M. Wiederhorn, E. R. Fuller and R. Thomson, Metal Sci. 14 (1980) 450.

    CAS  Google Scholar 

  60. G. E. Boyd and H. K. Livingston, J. Amer. Ceram. Soc. 64 (1942) 2383.

    CAS  Google Scholar 

  61. J. Schultz and H. Simon, Verres Refract. 34 (1980) 192.

    CAS  Google Scholar 

  62. P. W. R. Beaumont and R. J. Young, J. Mater. Sci. 10 (1975) 1334.

    CAS  Google Scholar 

  63. E. J. Rippling, S. Mostovoy and C. Bersch, J. Adhes. 3 (1971) 145.

    Google Scholar 

  64. D. P. Hasselman, D. A. Krohn, R. C. Bradt and J. A. Coppola, “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 749.

    Google Scholar 

  65. E. Orowan, Nature 154 (1944) 341.

    Google Scholar 

  66. T. A. Michalske and S. W. Freiman, J. Amer. Ceram. Soc. 66 (1983) 284.

    CAS  Google Scholar 

  67. B. J. Hockey, “Fracture Mechanics of Ceramics”, Vol. 6, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) p. 637.

    Google Scholar 

  68. S. M. Wiederhorn and P. R. Townsend, J. Amer. Ceram. Soc. 53 (1970) 486.

    CAS  Google Scholar 

  69. B. R. Lawn, B. J. Hockey and S. M. Wiederhorn, J. Mater. Sci. 15 (1980) 1207.

    CAS  Google Scholar 

  70. B. J. Hockey and B. R. Lawn, ibid. 10 (1975) 1275.

    CAS  Google Scholar 

  71. C. Gurney and S. Pearson, Proc. R. Soc. A192 (1948) 537.

    Google Scholar 

  72. A. G. Evans and E. R. Fuller, Metall. Trans. 5 (1974) 27.

    Google Scholar 

  73. A. G. Evans, L. R. Russel and D. W. Richerson, ibid. 6A (1975) 707.

    CAS  Google Scholar 

  74. Y. W. Mai, A. G. Atkins, ibid. 6A (1975) 2161.

    Google Scholar 

  75. R. J. Stokes, T. L. Johnston and C. H. Li, Trans. AIME 218 (1960) 655.

    CAS  Google Scholar 

  76. A. R. C. Westwood, Ind. Eng. Chem. 56 (1964) 15.

    Google Scholar 

  77. A. J. Holland and W. E. S. Turner, J. Soc. Glass Technol. 21 (1937) 383.

    CAS  Google Scholar 

  78. T. C. Baker and F. W. Preston, J. Appl. Phys. 17 (1946) 179.

    CAS  Google Scholar 

  79. R. E. Mould, J. Amer. Ceram. Soc. 43 (1960) 160.

    CAS  Google Scholar 

  80. B. A. Proctor, Phys. Chem. Glasses 3 (1962) 7.

    Google Scholar 

  81. R. H. Doremus and E. K. Pavelchek, J. Appl. Phys. 46 (1975) 4096.

    Google Scholar 

  82. T. P. Dabbs and B. R. Lawn, J. Amer. Ceram. Soc. 65 (1982) C37.

    CAS  Google Scholar 

  83. A. G. Metcalfe, M. E. Gulden and G. K. Schmitz, Glass Technol. 12 (1971) 15.

    CAS  Google Scholar 

  84. A. G. Metcalfe and G. K. Schmitz, ibid. 13 (1972) 5.

    CAS  Google Scholar 

  85. J. Nakayama, J. Amer. Ceram. Soc. 48 (1965) 583.

    CAS  Google Scholar 

  86. H. G. Tattersall and G. Tappin, J. Mater. Sci. 1 (1966) 296.

    Google Scholar 

  87. R. W. Davidge and G. Tappin, ibid. 3 (1968) 165.

    CAS  Google Scholar 

  88. J. Nakayama, H. Abe and R. C. Bradt, J. Amer. Ceram. Soc. 64 (1981) 671.

    Google Scholar 

  89. J. P. Berry, Nature 185 (1960) 91.

    Google Scholar 

  90. G. P. Marshall, L. H. Coutts and J. G. Williams, J. Mater. Sci. 9 (1974) 1409.

    CAS  Google Scholar 

  91. W. Döll and G. W. Weidman, ibid. 11 (1976) 2348.

    Google Scholar 

  92. R. D. Margolis, R. W. Dunlap and H. Markovitz, ASTM STP 601 (American Society for Testing and Materials, Philadelphia, 1976) p. 391.

    Google Scholar 

  93. H. S. Dobbs, J. E. Field and A. H. Maitland, Phil. Mag. 28 (1973) 33.

    CAS  Google Scholar 

  94. A. I. Bailey, J. Appl. Phys. 32 (1961) 1407.

    CAS  Google Scholar 

  95. H. Dannenberg, J. Appl. Polym. Sci. 5 (1961) 125.

    CAS  Google Scholar 

  96. L. J. Broutman and F. J. McGarry, ibid. 9 (1965) 589.

    CAS  Google Scholar 

  97. R. S. Rivlin, Paint Technol. 9 (1944) 215.

    Google Scholar 

  98. B. V. Deryagin and N. A. Krotova, Dokl. Akad. Nauk SSSR 61 (1948) 849.

    CAS  Google Scholar 

  99. D. W. Aubrey, “Adhesion 3”, edited by K. W. Allen (Applied Science, London, 1978) p. 191.

    Google Scholar 

  100. D. W. Aubrey and M. Sherriff, J. Polym. Sci. 18 (1980) 2597.

    CAS  Google Scholar 

  101. S. Yamini and R. J. Young, Polymer 18 (1977) 1075.

    CAS  Google Scholar 

  102. R. J. Young and P. W. R. Beaumont, J. Mater. Sci. 11 (1976) 776.

    CAS  Google Scholar 

  103. S. Yamini and R. J. Young, ibid. 14 (1979) 1609.

    CAS  Google Scholar 

  104. S. Mostovoy, P. B. Crosley and E. J. Ripling, ASTM STP 601 (American Society for Testing and Materials, Philadelphia, 1976) p. 234.

    Google Scholar 

  105. W. L. Fourney and T. Koybayashi, ASTM STP 678 (American Society for Testing and Materials, Philadelphia, 1979) p. 47.

    Google Scholar 

  106. T. K. M. Wong, PhD Thesis, Council for National Academic Awards, London (1969).

    Google Scholar 

  107. A. K. Green and P. L. Pratt, Eng. Fract. Mech. 6 (1974) 71.

    CAS  Google Scholar 

  108. L. J. Broutman and T. Kobayashi, “Dynamic crack propagation”, edited by G. C. Sih (Noordhoff, Leyden, 1973) pp. 215–25.

    Google Scholar 

  109. J. A. Kies, A. M. Sullivan and G. R. Irwin, J. Appl. Phys. 21 (1950) 716.

    Google Scholar 

  110. A. Smekal, Glasstechn. Ber. 23 (1950) 186.

    Google Scholar 

  111. B. Cotterell, Int. J. Fract. Mech. 4 (1968) 209.

    Google Scholar 

  112. F. A. Johnson and J. C. Radon, Eng. Fract. Mech. 4 (1972) 555.

    CAS  Google Scholar 

  113. J. G. Williams. Int. J. Fract. 8 (1972) 393.

    Google Scholar 

  114. D. W. Aubrey, G. N. Welding and T. Wong, J. Appl. Polym. Sci. 13 (1969) 2193.

    CAS  Google Scholar 

  115. J. J. Benbow, Proc. Phys. Soc. 78 (1961) 970.

    CAS  Google Scholar 

  116. M. I. Hakeem and M. G. Phillips, J. Mater. Sci. 13 (1978) 2284.

    CAS  Google Scholar 

  117. Idem, ibid. 14 (1979) 2901.

    CAS  Google Scholar 

  118. Y. W. Mai, J. Mater. Sci. 10 (1975) 943.

    CAS  Google Scholar 

  119. B. W. Cherry and K. W. Thomson, ibid. 14 (1979) 3004.

    CAS  Google Scholar 

  120. J. R. Varner and V. D. Frechette, J. Appl. Phys. 42 (1971) 1983.

    Google Scholar 

  121. T. A. Michalske, J. R. Varner and V. D. Frechette, “Fracture mechanics of ceramics”, Vol. 4, edited by R. C. Brandt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1978) p. 639.

    Google Scholar 

  122. T. A. Michalske and V. D. Frechette, J. Amer. Ceram. Soc. 63 (1980) 603.

    CAS  Google Scholar 

  123. S. J. Burns and B. R. Lawn, Int. J. Fract. Mech. 4 (1968) 339.

    Google Scholar 

  124. J. G. Williams and G. P. Marshall, Proc. R. Soc. A342 (1975) 55.

    Google Scholar 

  125. P. Chantikul, B. R. Lawn, H. Richter and S. W. Freiman, J. Amer. Ceram. Soc. 66 (1983) 515.

    Google Scholar 

  126. N. Perrone and H. Liebowitz, Proceedings of the 1st Conference on Fracture, Vol. 3, Sendai, Japan, edited by T. Yokobori, T. Kawasaki, J. L. Swedlow, (Japanese Society for Strength and Fracture of Materials, 1966) p. 2065.

  127. J. Newman and W. H. Smyrl, Metall. Trans. 5 (1974) 469.

    CAS  Google Scholar 

  128. L. R. F. Rose, Int. J. Fract. 17 (1981) 45.

    Google Scholar 

  129. A. G. Evans and M. Linzer, J. Amer. Ceram. Soc. 56 (1973) 575.

    CAS  Google Scholar 

  130. A. G. Evans, M. Linzer and L. R. Russel. Mater. Sci. Eng. 15 (1974) 253.

    Google Scholar 

  131. J. S. Nadeau, J. Amer. Ceram. Soc. 64 (1981) 585.

    Google Scholar 

  132. W. E. Swindlehurst and T. R. Wilshaw, J. Mater. Sci. 11 (1976) 1653.

    Google Scholar 

  133. R. Mouginot and D. Maugis, ibid, in press.

    Google Scholar 

  134. L. S. Bryukhanova, I. A. Andreeva and V. I. Likhman, Sov. Phys. Solid State 3 (1962) 2025.

    Google Scholar 

  135. A. R. C. Westwood and M. H. Kamdar, Philos. Mag. 8 (1963) 787.

    CAS  Google Scholar 

  136. K. Kamdar, Progr. Mater. Sci. 15 (1973) 289.

    CAS  Google Scholar 

  137. N. S. Stoloff and T. L. Johnston, Acta Metall. 11 (1963) 251.

    CAS  Google Scholar 

  138. F. N. Rhines, J. A. Alexander and W. F. Barclay, AMS Trans. 55 (1962) 22.

    CAS  Google Scholar 

  139. A. R. C. Westwood, “Fracture of solids”, edited by D. C. Drucker and J. J. Gilman (Interscience, New York, 1963) p. 553.

    Google Scholar 

  140. A. K. Huntington, J. Inst. Metals 11 (1914) 108.

    Google Scholar 

  141. E. Heyn, ibid. 12 (1914) 3.

    CAS  Google Scholar 

  142. P. A. Rehbinder and E. D. Shchukin, “Progress in Surface Science”, Vol. 3, Part 2 (Pergamon, Oxford, 1972) pp. 97–188.

    Google Scholar 

  143. Idem, Sov. Phys. Uspekki (1973) 533.

  144. D. Maugis and G. Andarelli, Metaux, Corrosion, Industrie No. 581 (1974) 19.

    Google Scholar 

  145. Idem, ibid. No. 583 (1974) 119.

    Google Scholar 

  146. Idem, ibid. No. 584 (1974) 167.

    Google Scholar 

  147. E. D. Shchukin, “Surface effects in crystal plasticity,” edited by R. M. Latanision and J. T. Fourie (Noordhoff, Leyden, 1977) p. 701.

    Google Scholar 

  148. V. I. Likhtman and E. D. Shchukin, Sov. Phys. Uspekhi 66 (1958) 91.

    Google Scholar 

  149. W. Rostoker, J. M. McCaughey and H. Markus, “Embrittlement by liquid metals” (Rheinhold, New York, 1960).

    Google Scholar 

  150. V. I. Likhtman, E. D. Shchukin and P. A. Rehbinder, “Physicochemical mechanics of Metals” (Israel Program for Scientific Translation, Jerusalem, 1964).

    Google Scholar 

  151. N. S. Stoloff, R. G. Davies and T. L. Johnston, “Environment sensitive mechanical behavior”, edited by A. R. C. Westwood and N. S. Stoloff (Gordon and Breach, New York, 1966) p. 613.

    Google Scholar 

  152. N. S. Stoloff, “Surfaces and Interfaces”, Vol. 2, edited by J. J. Burke, N. L. Read and V. Weiss (Syracuse University, Syracuse, New York, 1968) p. 157.

    Google Scholar 

  153. A. R. C. Westwood, C. M. Preece and M. H. Kamdar, “Fracture”, Vol. 3, edited by H. Liebowitz (Academic Press, New York, 1971) p. 589.

    Google Scholar 

  154. M. G. Nicholas and C. F. Old, J. Mater. Sci. 14 (1979) 1.

    CAS  Google Scholar 

  155. S. P. Lynch, “Advances in the Mechanics and Physics of Solids”, Vol. 2, edited by R. M. Latanision and T. E. Fisher (Harwood Academic, Chur, London, New York, Paris, Utrecht, 1983) p. 265.

    Google Scholar 

  156. J. R. Low, Trans. AIME 245 (1969) 2481.

    CAS  Google Scholar 

  157. M. P. Seah, Surf. Sci. 53 (1975) 168.

    CAS  Google Scholar 

  158. Idem, Proc. R. Soc. A349 (1976) 535.

    Google Scholar 

  159. Idem, Acta Metall. 25 (1977) 345.

    CAS  Google Scholar 

  160. M. P. Seah and E. D. Hondros, “Atomistics of fracture”, edited by R. M. Latanision and J. R. Pickens (Plenum, New York, 1983) p. 855.

    Google Scholar 

  161. A. G. Skvortsov, G. A. Sinevitch, N. V. Pertsov, E. D. Shchukin and P. A. Rehbinder, Sov. Phys. Dokl. 15 (1971) 669.

    Google Scholar 

  162. D. Maugis and G. Andarelli, J. Appl. Phys. 43 (1972) 4258.

    Google Scholar 

  163. R. Defay, I. Prigogine and A. Bellemans, “Surface tension and adsorption” (Longmans, London, 1966) p. 94.

    Google Scholar 

  164. A. W. Adamson, “Physical chemistry of surfaces” (Wiley, New York, 1976) p. 389.

    Google Scholar 

  165. D. McLean, “Grain boundaries in metals” (Clarendon, Oxford, 1957) p. 299.

    Google Scholar 

  166. C. Lea and M. P. Seah, Philos. Mag. 35 (1977) 213.

    CAS  Google Scholar 

  167. E. D. Hondros and M. P. Seah, Metall. Trans. 8A (1977) 1363.

    CAS  Google Scholar 

  168. E. D. Hondros, Proc. R. Soc. A286 (1965) 479.

    Google Scholar 

  169. M. P. Seah and E. D. Hondros, ibid. A335 (1973) 191.

    Google Scholar 

  170. E. D. Hondros and D. McLean, Philos. Mag. 29 (1974) 771.

    CAS  Google Scholar 

  171. M. C. Inman and H. R. Tipler, Metall. Rev. 8 (1963) 105.

    CAS  Google Scholar 

  172. J. P. Hirth and J. R. Rice, Metall. Trans. 11A (1980) 1501.

    CAS  Google Scholar 

  173. M. P. Seah, Acta Metall. 28 (1980) 955.

    CAS  Google Scholar 

  174. A. A. Griffith, Phil. Trans. R. Soc. A221 (1920) 163.

    Google Scholar 

  175. E. Orowan, Trans. Inst. Eng. Shipbldrs. Scotl. 89 (1945) 165.

    CAS  Google Scholar 

  176. G. R. Irwin and J. A. Kies. Weld. J. Res. Suppl. 31 (1952) 95.

    Google Scholar 

  177. Idem, ibid. 33 (1954) 193.

    Google Scholar 

  178. H. H. Westergaard, Trans. ASME 61 (1939) A49.

    Google Scholar 

  179. I. N. Sneddon, Proc. R. Soc. 187 (1946) 229.

    Google Scholar 

  180. G. R. Irwin, J. Appl. Mech. 24 (1957) 361.

    Google Scholar 

  181. G. R. Irwin, “Encyclodedia of Physics”, Vol. 7, edited by Flügge (Springer Verlag, 1958).

  182. E. Orowan, Rep. Progr. Phys. 12 (1949) 185.

    Google Scholar 

  183. G. R. Irwin, Trans. ASM 40A (1948) 147.

    Google Scholar 

  184. J. E. Strawley and W. F. Brown, ASTM STP 381 (American Society for Testing and Materials, Philadelphia, 1965) p. 133.

    Google Scholar 

  185. G. R. Irwin and P. C. Paris, “Fracture”, Vol. 3, edited by H. Liebowitz (Academic, New York, 1971) p. 1.

    Google Scholar 

  186. J. R. Rice, Proceedings of 1st International Congress on Fracture, Vol. 1, Sendai, Japan, 1965, edited by T. Yokobori, T. Kawasaki and J. L. Swedlow, (Japanese Society for Strength and Fracture of Materials, 1966) p. 2065.

  187. C. J. McMahon and V. Vitek, Acta Metall. 27 (1979) 507.

    CAS  Google Scholar 

  188. M. L. Jokl, V. Vitek and C. J. McMahon, Acta Metall. 28 (1980) 1479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maugis, D. Subcritical crack growth, surface energy, fracture toughness, stick-slip and embrittlement. J Mater Sci 20, 3041–3073 (1985). https://doi.org/10.1007/BF00545170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00545170

Keywords

Navigation