Skip to main content
Log in

A simple method of constructing an Ashby-type deformation mechanism map

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An Ashby-type deformation mechanism map may be considerably simplified by plotting in the form of normalized stress versus the reciprocal of the homologous temperature. In this form, the boundaries separating the various fields appear as straight lines and the constant strain rate contours may be approximated as straight lines. Representative maps are presented for conditions of high temperature creep, and a simple procedure is outlined for constructing several maps for the same material at different grain sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Weertman and J. R. Weertman, “Physical Metallurgy”, edited by R. W. Cahn (North-Holland, Amsterdam, 1965) p. 793.

    Google Scholar 

  2. J. Weertman, Trans. Amer. Soc. Metals 61 (1968) 681.

    Google Scholar 

  3. M. F. Ashby, Acta Met. 20 (1972) 887.

    Google Scholar 

  4. R. L. Stocker and M. F. Ashby, Rev. Geophys. Space Phys. 11 (1973) 391.

    Google Scholar 

  5. M. F. Ashby, “The Microstructure and Design of Alloys”, Vol. 2 (The Institute of Metals and The Iron and Steel Institute, London, 1973) p. 8.

    Google Scholar 

  6. J. T. A. Roberts and J. G. Voglewede, J. Amer. Ceram. Soc. 56 (1973) 472.

    Google Scholar 

  7. P. A. Urick and M. R. Notis, ibid 56 (1973) 570.

    Google Scholar 

  8. J. H. Gittus, Phil. Mag. 30 (1974) 751.

    Google Scholar 

  9. M. R. Notis, J. Amer. Ceram. Soc. 57 (1974) 271.

    Google Scholar 

  10. Idem, Powder Met. Int. 6 (1974) 82.

    Google Scholar 

  11. M. F. Ashby and H. J. Frost, “Constitutive Equations in Plasticity”, edited by A. S. Argon (MIT Press, Cambridge, Mass., 1975) p. 117.

    Google Scholar 

  12. H. J. Frost and M. F. Ashby, “Rate Processes in Plastic Deformation of Materials”, edited by J. C. M. Li and A. K. Mukherjee (American Society for Metals, Metals Park, Ohio, 1975) p. 70.

    Google Scholar 

  13. M. F. Ashby and R. Raj, “The Mechanics and Physics of Fracture” (The Metals Society, London, 1975) p. 148.

    Google Scholar 

  14. M. R. Notis, “Deformation of Ceramic Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) p. 1.

    Google Scholar 

  15. A. Samuelsson and A. Tholen, “Grain Boundaries in Engineering Materials”, edited by J. L. Walter, J. H. Westbrook and D. A. Woodford (Claitor's Publishing Division, Baton Rouge, 1975) p. 107.

    Google Scholar 

  16. F. W. Crossman and M. F. Ashby, Acta Met. 23 (1975) 425.

    Google Scholar 

  17. M. R. Notis, R. H. Smoak and V. Krishnamachari, Mater. Sci. Res. 10 (1975) 493.

    Google Scholar 

  18. D. B. Knorr and M. R. Notis, J. Nuclear Mater. 56 (1975) 18.

    Google Scholar 

  19. M. F. Ashby, J. Geol. Soc. 132 (1976) 558.

    Google Scholar 

  20. S. White, Phil. Trans. Roy. Soc. A 283 (1976) 69.

    Google Scholar 

  21. M. S. Paterson, ibid 283 (1976) 163.

    Google Scholar 

  22. E. H. Rutter, ibid 283 (1976) 203.

    Google Scholar 

  23. R. K. Bhargava, J. Moteff and R. W. Swindeman, Met. Trans. 7A (1976) 879.

    Google Scholar 

  24. B. K. Atkinson, Earth and Planetary Sci. Lett. 29 (1976) 210.

    Google Scholar 

  25. L. C. A. Samuelsson, K. N. Melton and J. W. Edington, Acta Met. 24 (1976) 1017.

    Google Scholar 

  26. R. N. Singh, J. Nuclear Mater. 64 (1977) 167.

    Google Scholar 

  27. V. Krishnamachari and M. R. Notis, Mater. Sci. Eng. 27 (1977) 83.

    Google Scholar 

  28. R. A. Verrall, R. J. Fields and M. F. Ashby, J. Amer. Ceram. Soc. 60 (1977) 211.

    Google Scholar 

  29. B. Ilschner, “Hochtemperatur-Plastizität”, Reine und angewandte Metallkunde in Einzeldarstellungen, Vol. 23 (Springer-Verlag, Berlin, 1973) p. 258.

    Google Scholar 

  30. J. Gittus, “Creep, Viscoelasticity and Creep Fracture in Solids” (John Wiley, New York, 1975) p. 274.

    Google Scholar 

  31. A. G. Evans and T. G. Langdon, Prog. Mater. Sci. 21 (1976) 171.

    Google Scholar 

  32. A. G. Guy, “Essentials of Materials Science” (McGraw-Hill, New York, 1976) p. 324.

    Google Scholar 

  33. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials” (John Wiley, New York, 1976) p. 156.

    Google Scholar 

  34. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”, 2nd edition (John Wiley, New York, 1976) p. 745.

    Google Scholar 

  35. J.-P. Poirier, “Plasticité à Haute Température des Solides Cristallins” (Eyrolles, Paris, 1976) p. 156.

    Google Scholar 

  36. A. Nicolas and J.-P. Poirier, “Crystalline Plasticity and Solid State Flow in Metamorphic Rocks” (John Wiley, London, 1976) p. 403.

    Google Scholar 

  37. S. M. Copley and J. C. Williams, “Alloy and Microstructural Design”, edited by J. K. Tien and G. S. Ansell (Academic Press, New York, 1976) p. 3.

    Google Scholar 

  38. F. A. Mohamed and T. G. Langdon, Met. Trans. 5 (1974) 2339.

    Google Scholar 

  39. T. G. Langdon and F. A. Mohamed, J. Mater. Sci. 11 (1976) 317.

    Google Scholar 

  40. Idem, Mater. Sci. Eng. 32 (1978) 103.

    Google Scholar 

  41. Idem, J. Mater. Sci. 13 (1978) 473.

    Google Scholar 

  42. F. R. N. Nabarro, “Report of a Conference on Strength of Solids” (The Physical Society, London, 1948) p. 75.

    Google Scholar 

  43. C. Herring, J. Appl. Phys. 21 (1950) 437.

    Google Scholar 

  44. R. L. Coble, ibid 34 (1963) 1679.

    Google Scholar 

  45. J. Harper and J. E. Dorn, Acta Met. 5 (1957) 654.

    Google Scholar 

  46. F. A. Mohamed and T. G. Langdon, J. Eng. Mater. Tech. 98 (1976) 125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langdon, T.G., Mohamed, F.A. A simple method of constructing an Ashby-type deformation mechanism map. J Mater Sci 13, 1282–1290 (1978). https://doi.org/10.1007/BF00544735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544735

Keywords

Navigation