Journal of Materials Science

, Volume 13, Issue 6, pp 1282–1290 | Cite as

A simple method of constructing an Ashby-type deformation mechanism map

  • Terence G. Langdon
  • Farghalli A. Mohamed


An Ashby-type deformation mechanism map may be considerably simplified by plotting in the form of normalized stress versus the reciprocal of the homologous temperature. In this form, the boundaries separating the various fields appear as straight lines and the constant strain rate contours may be approximated as straight lines. Representative maps are presented for conditions of high temperature creep, and a simple procedure is outlined for constructing several maps for the same material at different grain sizes.


Polymer Grain Size Deformation Mechanism Simple Procedure Constant Strain Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Weertman and J. R. Weertman, “Physical Metallurgy”, edited by R. W. Cahn (North-Holland, Amsterdam, 1965) p. 793.Google Scholar
  2. 2.
    J. Weertman, Trans. Amer. Soc. Metals 61 (1968) 681.Google Scholar
  3. 3.
    M. F. Ashby, Acta Met. 20 (1972) 887.Google Scholar
  4. 4.
    R. L. Stocker and M. F. Ashby, Rev. Geophys. Space Phys. 11 (1973) 391.Google Scholar
  5. 5.
    M. F. Ashby, “The Microstructure and Design of Alloys”, Vol. 2 (The Institute of Metals and The Iron and Steel Institute, London, 1973) p. 8.Google Scholar
  6. 6.
    J. T. A. Roberts and J. G. Voglewede, J. Amer. Ceram. Soc. 56 (1973) 472.Google Scholar
  7. 7.
    P. A. Urick and M. R. Notis, ibid 56 (1973) 570.Google Scholar
  8. 8.
    J. H. Gittus, Phil. Mag. 30 (1974) 751.Google Scholar
  9. 9.
    M. R. Notis, J. Amer. Ceram. Soc. 57 (1974) 271.Google Scholar
  10. 10.
    Idem, Powder Met. Int. 6 (1974) 82.Google Scholar
  11. 11.
    M. F. Ashby and H. J. Frost, “Constitutive Equations in Plasticity”, edited by A. S. Argon (MIT Press, Cambridge, Mass., 1975) p. 117.Google Scholar
  12. 12.
    H. J. Frost and M. F. Ashby, “Rate Processes in Plastic Deformation of Materials”, edited by J. C. M. Li and A. K. Mukherjee (American Society for Metals, Metals Park, Ohio, 1975) p. 70.Google Scholar
  13. 13.
    M. F. Ashby and R. Raj, “The Mechanics and Physics of Fracture” (The Metals Society, London, 1975) p. 148.Google Scholar
  14. 14.
    M. R. Notis, “Deformation of Ceramic Materials”, edited by R. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) p. 1.Google Scholar
  15. 15.
    A. Samuelsson and A. Tholen, “Grain Boundaries in Engineering Materials”, edited by J. L. Walter, J. H. Westbrook and D. A. Woodford (Claitor's Publishing Division, Baton Rouge, 1975) p. 107.Google Scholar
  16. 16.
    F. W. Crossman and M. F. Ashby, Acta Met. 23 (1975) 425.Google Scholar
  17. 17.
    M. R. Notis, R. H. Smoak and V. Krishnamachari, Mater. Sci. Res. 10 (1975) 493.Google Scholar
  18. 18.
    D. B. Knorr and M. R. Notis, J. Nuclear Mater. 56 (1975) 18.Google Scholar
  19. 19.
    M. F. Ashby, J. Geol. Soc. 132 (1976) 558.Google Scholar
  20. 20.
    S. White, Phil. Trans. Roy. Soc. A 283 (1976) 69.Google Scholar
  21. 21.
    M. S. Paterson, ibid 283 (1976) 163.Google Scholar
  22. 22.
    E. H. Rutter, ibid 283 (1976) 203.Google Scholar
  23. 23.
    R. K. Bhargava, J. Moteff and R. W. Swindeman, Met. Trans. 7A (1976) 879.Google Scholar
  24. 24.
    B. K. Atkinson, Earth and Planetary Sci. Lett. 29 (1976) 210.Google Scholar
  25. 25.
    L. C. A. Samuelsson, K. N. Melton and J. W. Edington, Acta Met. 24 (1976) 1017.Google Scholar
  26. 26.
    R. N. Singh, J. Nuclear Mater. 64 (1977) 167.Google Scholar
  27. 27.
    V. Krishnamachari and M. R. Notis, Mater. Sci. Eng. 27 (1977) 83.Google Scholar
  28. 28.
    R. A. Verrall, R. J. Fields and M. F. Ashby, J. Amer. Ceram. Soc. 60 (1977) 211.Google Scholar
  29. 29.
    B. Ilschner, “Hochtemperatur-Plastizität”, Reine und angewandte Metallkunde in Einzeldarstellungen, Vol. 23 (Springer-Verlag, Berlin, 1973) p. 258.Google Scholar
  30. 30.
    J. Gittus, “Creep, Viscoelasticity and Creep Fracture in Solids” (John Wiley, New York, 1975) p. 274.Google Scholar
  31. 31.
    A. G. Evans and T. G. Langdon, Prog. Mater. Sci. 21 (1976) 171.Google Scholar
  32. 32.
    A. G. Guy, “Essentials of Materials Science” (McGraw-Hill, New York, 1976) p. 324.Google Scholar
  33. 33.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials” (John Wiley, New York, 1976) p. 156.Google Scholar
  34. 34.
    W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics”, 2nd edition (John Wiley, New York, 1976) p. 745.Google Scholar
  35. 35.
    J.-P. Poirier, “Plasticité à Haute Température des Solides Cristallins” (Eyrolles, Paris, 1976) p. 156.Google Scholar
  36. 36.
    A. Nicolas and J.-P. Poirier, “Crystalline Plasticity and Solid State Flow in Metamorphic Rocks” (John Wiley, London, 1976) p. 403.Google Scholar
  37. 37.
    S. M. Copley and J. C. Williams, “Alloy and Microstructural Design”, edited by J. K. Tien and G. S. Ansell (Academic Press, New York, 1976) p. 3.Google Scholar
  38. 38.
    F. A. Mohamed and T. G. Langdon, Met. Trans. 5 (1974) 2339.Google Scholar
  39. 39.
    T. G. Langdon and F. A. Mohamed, J. Mater. Sci. 11 (1976) 317.Google Scholar
  40. 40.
    Idem, Mater. Sci. Eng. 32 (1978) 103.Google Scholar
  41. 41.
    Idem, J. Mater. Sci. 13 (1978) 473.Google Scholar
  42. 42.
    F. R. N. Nabarro, “Report of a Conference on Strength of Solids” (The Physical Society, London, 1948) p. 75.Google Scholar
  43. 43.
    C. Herring, J. Appl. Phys. 21 (1950) 437.Google Scholar
  44. 44.
    R. L. Coble, ibid 34 (1963) 1679.Google Scholar
  45. 45.
    J. Harper and J. E. Dorn, Acta Met. 5 (1957) 654.Google Scholar
  46. 46.
    F. A. Mohamed and T. G. Langdon, J. Eng. Mater. Tech. 98 (1976) 125.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • Terence G. Langdon
    • 1
  • Farghalli A. Mohamed
    • 1
  1. 1.Department of Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations