Journal of Materials Science

, Volume 13, Issue 6, pp 1206–1216 | Cite as

Phase separation behaviour of a metal-organic derived sodium silicate glass

  • M. C. Weinberg
  • G. F. Neilson


The phase separation behaviour of an 18.56 mol % Na2O-SiO2 glass prepared via the standard glass preparation technique and the metallic-organic derived (MOD) method have been studied and contrasted. Our results suggest that at this composition the miscibility temperature is significantly elevated when a MOD preparation procedure is used. The origin of this effect appears to be related to the enhanced water content in the glass prepared by the MOD procedure.


Sodium Polymer Silicate Phase Separation Preparation Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. F. James, J. Mater. Sci 10 (1975) 1802.Google Scholar
  2. 2.
    W. B. Hillig, “Symposium on Nucleation and Crystallization in Glasses and Melts,” edited by Reser (American Ceramic Society, Columbus, Ohio, 1962) p. 77.Google Scholar
  3. 3.
    R. R. Shaw and D. R. Uhlmann, J. Non-Cryst. Solids 1 (1969) 474.Google Scholar
  4. 4.
    L. L. Hench and H. F. Schaake, “Introduction to Glass Science,” edited by Pye, Stevens, and LaCourse (Plenum Press, New York, 1972) p. 583.Google Scholar
  5. 5.
    D. F. Howell, J. H. Summons and W. Haller, Ceram. Bull. 54 (1975) 707.Google Scholar
  6. 6.
    W. Haller, D. B. Blackburn and J. H. Simmons, J. Amer. Ceram. Soc. 57 (1974) 120.Google Scholar
  7. 7.
    N. J. Kreidl and M. S. Maklad, ibid 52 (1969) 508.Google Scholar
  8. 8.
    S. P. Mukherjee, J. Zarzycki and J. P. Traverse, J. Mater. Sci. 11 (1976) 341.Google Scholar
  9. 9.
    L. Levene and I. Thomas, U.S. Patent 3640093. (1972).Google Scholar
  10. 10.
    G. F. Neilson, Phys. Chem. Glasses 10 (1969) 54.Google Scholar
  11. 11.
    Idem, Discuss. Faraday Soc. 50 (1970) 145.Google Scholar
  12. 12.
    N. S. Andreev, D. A. Goganov and E. A. Porai-Koshits, “Structure of Glass”, Vol. 3, edited by E. A. Porai-Koshits (Translated by E. B. Uvarov Consultants Bureau, New York, 1966) p. 47.Google Scholar
  13. 13.
    H. Scholze, Glass Ind. 47 (1966) 546.Google Scholar
  14. 14.
    R. V. Adams, Phys. Chem. Glasses 2 (1961) 39.Google Scholar
  15. 15.
    H. Scholze, Glastechn. Ber. 32 (1959) 81.Google Scholar
  16. 16.
    J. H. Hildebrand and R. L. Scott, “Regular Solutions” (Prentice Hall Inc., Englewood Cliffs, N.J., 1962).Google Scholar
  17. 17.
    B. E. Warren and A. G. Pinars, J. Amer. Ceram. Soc. 23 (1940) 301.Google Scholar
  18. 18.
    H. Rawson, “Inorganic Glass-Forming Systems,” (Academic Press, London and New York, 1967) p. 115.Google Scholar
  19. 19.
    A. Dietzel, Z. Electrochem. 48 (1942) 9.Google Scholar
  20. 20.
    R. J. Charles, Phys. Chem. Glasses 10 (1969) 169.Google Scholar
  21. 21.
    H. Ramberg, Amer. Mineral 39 (1954) 256.Google Scholar
  22. 22.
    M. J. Buerger, ibid. 33 (1948) 744.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • M. C. Weinberg
    • 1
  • G. F. Neilson
    • 1
  1. 1.Materials ResearchOwen-Illinois Inc.ToledoUSA

Personalised recommendations