Journal of Materials Science

, Volume 13, Issue 5, pp 1093–1098 | Cite as

Growth criteria for solvent crazes

  • Edward J. Kramer
  • Heider G. Krenz
  • Dieter G. Ast


Single methanol crazes are grown from sharp cracks in polymethylmethacrylate. Double exposure holographic interferometry is used to determine the sequential strain energy release rates G and opening displacement profile of the craze from the initiation of growth to its cessation. The craze stress profile is determined at various points in its growth from the opening displacement profiles using a Fourier transform method. The rapid increase in G observed just before the craze ceases to grow demonstrates that craze growth criteria based on the concept of a constant critical total strain energy release rate cannot be correct. Similarly, the large stress concentration which develops just behind the craze tip at growth cessation is incompatible with the assumption that the craze grows to a length that just eliminates a stress singularity at its tip (Dugdale model). This feature, however, would be expected if sufficient methanol cannot reach the fibrils just behind the tip of the craze to plasticize them fully.


Polymethylmethacrylate Stress Singularity Strain Energy Release Strain Energy Release Rate Growth Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Kambour, J. Polymer Sci, 7 (1973) 1.Google Scholar
  2. 2.
    J. G. Williams, private communication.Google Scholar
  3. 3.
    I. D. Graham, J. G. Williams and E. L. Zichy, Polymer 17 (1976) 439.Google Scholar
  4. 4.
    D. S. Dugdale, J. Mech. Solids 8 (1960) 100.Google Scholar
  5. 5.
    E. H. Andrews and L. Bevan, Polymer 13 (1972) 337.Google Scholar
  6. 6.
    H. G. Krenz, E. J. Kramer and D. G. Ast, J. Polymer Sci. Polymer Lett. 13 (1975) 583.Google Scholar
  7. 7.
    H. G. Krenz, D. G. Ast and E. J. Kramer, J. Mater. Sci. 11 (1976) 2211.Google Scholar
  8. 8.
    J. G. Williams and G. P. Marshall, Proc. Roy. Soc. London. A342 (1975) 55.Google Scholar
  9. 9.
    G. P. Marshall, L. E. Culver and J. G. Williams, ibid. A319 (1970) 165.Google Scholar
  10. 10.
    T. L. Peterson, D. G. Ast and E. J. Kramer, J. Appl. Phys. 45 (1974) 4220.Google Scholar
  11. 11.
    I. N. Sneddon, “Fourier Transforms” (McGraw-Hill, New York, 1951) p. 395.Google Scholar
  12. 12.
    A. C. Knight, J. Polymer Sci. A3 (1965) 1845.Google Scholar
  13. 13.
    H. G. Krenz, Ph. D. Thesis, Cornell University, 1977.Google Scholar
  14. 14.
    N. Verheulpen-Heymans, J. Polymer Sci. 14 (1976) 93.Google Scholar
  15. 15.
    E. J. Kramer and R. A. Bubeck, to be published.Google Scholar
  16. 16.
    E. H. Andrews, G. M. Levy, and J. Willis, J. Mater. Sci. 8 (1973) 1000.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • Edward J. Kramer
    • 1
  • Heider G. Krenz
    • 1
  • Dieter G. Ast
    • 1
  1. 1.Department of Materials Science and Engineering and the Materials Science CenterCornell UniversityIthacaUSA

Personalised recommendations