Journal of Materials Science

, Volume 13, Issue 5, pp 1061–1074 | Cite as

The effect of electron beam welding on various properties of three austenitic stainless steels

  • G. D. Raasch
  • Z. A. Munir


The influence of electron beam welding on various properties of semistable austenitic stainless steels: 304L, 316 (low nitrogen), and 21-6-9 were investigated. Tensile tests performed on transverse butt joints gave joint efficiences approaching 95% of theoretical efficiencies. The joint ductility for all steels, however, was 50 to 70% that of unwelded samples. Hardness testing revealed that the parent matrix was harder than the heat affected zone (HAZ) which in turn was harder than the fusion zone. Microstructural examination showed that the residual 11% cold-working had induced a partial martensitic transformation in the HAZ. The formation of (Fe, Cr)23(C, N)6 precipitate is responsible for the observed change in mechanical properties in the fusion zone. Electron microprobe analysis showed that a redistribution of the metallic elements (Ni, Cr, Mo) occurred in the fusion zone but that the nonmetals (P, S, Si) were relatively unaffected by the fusion process. Corrosion sensitivity tests showed that only the 304L steel was susceptible to corrosion cracking. Microstructural observations of failed surfaces of this steel reveal that fracture begins in a semi-brittle mode at the weld root and continues through the HAZ in a ductile manner.


Ductility Martensitic Transformation Austenitic Stainless Steel Fusion Zone Heat Affected Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Zemzin, A. V. Boeva and T. I. Bagramov, Automat. Weld. 19 (1966) 1.Google Scholar
  2. 2.
    J. Lepsatre, M. Hubert and C. Messager, Rev. Met. 66 (1969) 771.Google Scholar
  3. 3.
    Y. Arrata, F. Matsuda and S. Saruwatari, Trans. Japan Weld. Res. Inst. 3 (1974) 79.Google Scholar
  4. 4.
    D. Seferian, “The Metallurgy of Welding” (John Wiley and Sons, New York, 1962) p. 248.Google Scholar
  5. 5.
    A. Bernstein, Rev. Sourdure 24 (1968) 142.Google Scholar
  6. 6.
    G. I. Parfessa, V. V. Podgaetsky and G. N. Gordan, Automat. Weld. 18 (1965) 12.Google Scholar
  7. 7.
    O. K. Nazarenko, V. F. Gragin, V. E. Lokshin and G. N. Korab, ibid 27 (1974) 1.Google Scholar
  8. 8.
    I. Y. Zybko and L. V. Lyubavskii, Svar. Prioz. 5 (1970) 21.Google Scholar
  9. 9.
    A. M. Makara, N. E. Protosei and V. G. Gorgannyi, Automat. Weld. 22 (1969) 81.Google Scholar
  10. 10.
    L. J. Privoznik, R. S. Smith and J. S. Heverly, Weld. J. 8 (1971) 567.Google Scholar
  11. 11.
    P. J. Konkol, P. M. Smith, C. F. Willebrand and L. P. Conner, ibid 11 (1971) 765.Google Scholar
  12. 12.
    T. Boniszeski and D. M. Kenyon, Brit. Weld. J. 7 (1966) 1090.Google Scholar
  13. 13.
    A. A. Ware and E. R. Funk, Weld. J. 3 (1970) 115-s.Google Scholar
  14. 14.
    H. Zurn and L. Dorn, Metall. 21 (1967) 912.Google Scholar
  15. 15.
    N. A. Ol'Shansky and A. V. Zaitseva, Automat. Weld. 18 (1965) 28.Google Scholar
  16. 16.
    I. Y. Zybko, ibid 26 (1973) 5.Google Scholar
  17. 17.
    J. A. Brooks, Sandia Laboratories Report No. SLL-73-0060, Livermore, Ca., October 1973.Google Scholar
  18. 18.
    D. C. Ludwigson, J. Mater. 3 (1968) 394.Google Scholar
  19. 19.
    H. Gerlach and E. Schmidtmann, Arch. Eisenhuttenwesen 39 (1968) 139.Google Scholar
  20. 20.
    Y. Kawabee, R. Nakagawa and T. Mukoyama, Trans. Nat. Res. Inst. Metals, (Japan) 12 (1970) 57.Google Scholar
  21. 21.
    A. Steiner, Prace. Inst. Hutniczych 24 (1972) 255.Google Scholar
  22. 22.
    N. D. Tomashev, G. P. Chernova and O. N. Markova, Metsniereba (1971) 233.Google Scholar
  23. 23.
    F. Champion, “Corrosion Testing Procedures” (John Wiley and Sons, New York, 1965) p. 379.Google Scholar
  24. 24.
    J. W. Colby, “Magic IV, A Computer Program for Qualitative Electron Microprobe Analysis”, Bell Telephone Laboratories (1969).Google Scholar
  25. 25.
    J. Philibert and R. Trixier, Brit. J. Appl. Phys. 1 (1968) 685.Google Scholar
  26. 26.
    D. Duncumb and S. J. B. Reed, “Quantitative Electron Probe Microanalysis,”, NBS Spec. Pub. 298 (Washington D.C., 1968) p. 133.Google Scholar
  27. 27.
    M. J. Berger and S. J. Seltzer, NASA Report N65-12506, 1964.Google Scholar
  28. 28.
    T. Hashimoto, F. Matsuda and H. Suzuki, Trans. Nat. Res. Inst. Metals (Japan) 7 (1965) 144.Google Scholar
  29. 29.
    S. R. Thomas and G. Krauss, Trans. Met. Soc. AIME 239 (1967) 1136.Google Scholar
  30. 30.
    M. H. Lewis and B. Hattersly, Acta Met. 13 (1965) 1159.Google Scholar
  31. 31.
    R. Stickler and A. Vinckier, Trans. Met. Soc. AIME 224 (1962) 1021.Google Scholar
  32. 32.
    M. T. Groves and J. M. Gerken, TRW Equipment Laboratories, 1969.Google Scholar
  33. 33.
    H. Liebowitz, “Fracture”, Vol. 1 (Academic Press, New York, 1968) p. 378.Google Scholar

Copyright information

© Chapman and Hall Ltd 1978

Authors and Affiliations

  • G. D. Raasch
  • Z. A. Munir
    • 1
  1. 1.Materials and Devices Research Group and the Department of Mechanical EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations