Journal of Materials Science

, Volume 26, Issue 6, pp 1683–1690 | Cite as

Structural determination of a semiconductive tetramer of aniline by IR, UV-visible, ESR, XPS and mass spectroscopy techniques

  • Hari Singh Nalwa


A tetramer of aniline was obtained by the chemical oxidation of aniline in sulphanilic acid. The analytical techniques of infrared, UV-visible and mass spectroscopy show formation of a relatively short conjugation length oligomer (tetraaniline). The electronic structure elucidated by X-ray photoelectron spectroscopy reveals that the tetraaniline skeleton contains both benzenoid, [-NH-C6H4-NH-], and quinoid, [-N=C6H4=N-], phenyl rings. In the oxidized state, the tetraaniline backbone containing alternate benzenoid and quinoid phenyl units structurally similar to emeraldine was not evident. Electron spin resonance and electrical conductivity data show localized charge carriers in the backbone. Experimental results predicting the molecular structure of tetraaniline are discussed.


Phenyl Oligomer Electron Spin Resonance Aniline Phenyl Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. A. Skotheim, “Handbook of Conducting Polymers”, Vols I and II (Dekker, New York, 1986).Google Scholar
  2. 2.
    Proceedings of ICSM '88, published in Synth. Metals 28/29 (1989).Google Scholar
  3. 3.
    H. S. Nalwa, Synth. Metals 35 (1990) 387.CrossRefGoogle Scholar
  4. 4.
    Idem, Polym. Commun. 31 (1990) 232.Google Scholar
  5. 5.
    A. Techagumpuch, H. S. Nalwa and S. Miyata, in “Electroresponsive Molecular and Polymeric Systems”, edited by T. A. Skotheim (Dekker, New York, 1990) Ch. 5, pp. 257–294.Google Scholar
  6. 6.
    H. Letheby, J. Chem. Soc. 15 (1862) 161.CrossRefGoogle Scholar
  7. 7.
    J. J. Coquillion, Compt. rend. 82 (1876) 228.Google Scholar
  8. 8.
    M. A. Rosenstiehl, Ann. Chim. Phys. 8 (1976) 561.Google Scholar
  9. 9.
    L. Gilchrist, J. Phys. Chem. 8 (1904) 539.CrossRefGoogle Scholar
  10. 10.
    F. Goppelsroeder, Compt. rend. 82 (1876) 331.Google Scholar
  11. 11.
    T. Yasui, Bull. Chem. Soc. Jpn 10 (1935) 306.CrossRefGoogle Scholar
  12. 12.
    J. W. Shipley and M. T. Rogers, Can. J. Res. B17 (1939) 147.CrossRefGoogle Scholar
  13. 13.
    A. G. MacDiarmid, J. C. Chung and A. F. Richter, Synth. Metals 18 (1987) 285.CrossRefGoogle Scholar
  14. 14.
    J. C. Chung and A. G. MacDiarmid, ibid. 13 (1986) 193.CrossRefGoogle Scholar
  15. 15.
    T. Hayashi, Y. Hirai, H. Tanaka and T. Nishi, Jpn. J. Appl. Phys. 26 (1987) 1803.CrossRefGoogle Scholar
  16. 16.
    A. F. Diaz and J. A. Logan, J. Electroanal. Chem. 149 (1983) 101.CrossRefGoogle Scholar
  17. 17.
    A. Volkov, G. Tourillon, P. C. Lacaze and J. E. Dubois, J. Electrochem. Soc. 115 (1980) 279.Google Scholar
  18. 18.
    R. Noufi, A. J. Nojik, J. White and L. F. Warren, ibid. 129 (1982) 2261.CrossRefGoogle Scholar
  19. 19.
    A. J. Epstein, J. M. Ginder, F. Zuo, R. W. Bigelow, H. S. Woo, D. B. Tanner, A. F. Richter, W. S. Huang and A. G. MacDiarmid, Synth. Metals 18 (1987) 303.CrossRefGoogle Scholar
  20. 20.
    A. G. MacDiarmid, J. C. Chung, A. F. Richter and A. J. Epstein, ibid. 18 (1987) 285.CrossRefGoogle Scholar
  21. 21.
    E. M. Genies, A. A. Syed and C. Tsintavis, Mol. Cryst. Liq. Cryst. 121 (1985) 211.CrossRefGoogle Scholar
  22. 22.
    T. Kobayashi, H. Yoneyama and H. Tamura, J. Electroanal. Chem. 161 (1984) 419.CrossRefGoogle Scholar
  23. 23.
    A. G. MacDiarmid, J. Chiang, M. Halpern, W. S. Mu, N. L. D. Somasiri, W. Wu and S. I. Yaniger, Mol. Cryst. Liq. Cryst. 121 (1985) 187.CrossRefGoogle Scholar
  24. 24.
    R. D. Allendoerfer, private communication (1987).Google Scholar
  25. 25.
    J. J. Ritsko, J. Fink and G. Crecelius, Solid State Commun. 46 (1983) 477.CrossRefGoogle Scholar
  26. 26.
    S. Li, Y. Cao and Z. Xue, Synth. Metals 20 (1987) 141.CrossRefGoogle Scholar
  27. 27.
    Y. Cao, S. Li, Z. Xue and D. Guo, ibid. 16 (1986) 305.CrossRefGoogle Scholar
  28. 28.
    M. Ohira, T. Sakai, M. Takeuchi, Y. Kobayashi and M. Tsuji, ibid. 18 (1987) 347.CrossRefGoogle Scholar
  29. 29.
    T. Ohsaka, Y. Ohniki, N. Oyama, G. Katagiri and H. Kamisako, J. Electroanal. Chem. 161 (1984) 399.CrossRefGoogle Scholar
  30. 30.
    W. W. Focke and G. E. Wnek, unpublished results.Google Scholar
  31. 31.
    F. Lu, F. Wudl, M. Nowak and A. J. Heeger, J. Amer. Chem. Soc. 108 (1986) 8311.CrossRefGoogle Scholar
  32. 32.
    S. H. Glarum and J. H. Marshall, J. Phys. Chem. 90 (1986) 6067.CrossRefGoogle Scholar
  33. 33.
    T. Hagiwara, T. Demura and K. Iwata, Synth. Metals 18 (1987) 317.CrossRefGoogle Scholar
  34. 34.
    M. Kaya, A. Kitani and K. Sasaki, 51st National Meeting of the Chemical Society of Japan, Kazazawa, October 1985, IA15.Google Scholar
  35. 35.
    P. Snauwaert, R. Lazzaroni, J. Riga and J. J. Verbist, Synth. Metals 18 (1987) 335.CrossRefGoogle Scholar
  36. 36.
    W. R. Salaneck, I. Lundstrom, T. Hjertberg, C. B. Duke, E. Conwell, A. Paton, A. G. MacDiarmid, N. L. D. Somasiri, W. S. Huang and A. F. Richter, ibid. 18 (1987) 291.CrossRefGoogle Scholar
  37. 37.
    A. G. MacDiarmid, J. C. Chiang, M. Halpren, W. S. Huang, S. L. Mu, N. L. D. Somasiri, W. Wu and S. I. Yaniger, Mol. Cryst. Liq. Cryst. 121 (1985) 173.CrossRefGoogle Scholar
  38. 38.
    J. C. Chiang and A. G. MacDiarmid, Synth. Metals 13 (1986) 193.CrossRefGoogle Scholar
  39. 39.
    A. J. Epstein, J. M. Ginder, F. Zuo, H. S. Woo, D. B. Tanner, A. F. Richter, M. Angelopoulos, W. S. Huang and A. G. MacDiarmid, ibid. 21 (1987) 63.CrossRefGoogle Scholar
  40. 40.
    A. G. Green and S. Wolff, Ber. 46 (1913) 33.CrossRefGoogle Scholar
  41. 41.
    D. M. Mohliner, R. N. Adams and W. J. Argresinger Jr, J. Amer. Chem. Soc. 84 (1962) 3618.CrossRefGoogle Scholar
  42. 42.
    J. Bacon and R. N. Adams, ibid. 90 (1968) 6596,CrossRefGoogle Scholar
  43. 43.
    E. M. Conwell, C. B. Duke, A. Paton and W. Salaneck, Synth. Metals 19 (1987) 1006.CrossRefGoogle Scholar
  44. 44.
    L. Dunsch, J. Electroanal. Chem. 61 (1975) 61.CrossRefGoogle Scholar
  45. 45.
    R. Willstatter and C. Moore, Ber. 40 (1907) 2665.CrossRefGoogle Scholar
  46. 46.
    W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc., Faraday Trans. I 82 (1986) 2385.CrossRefGoogle Scholar
  47. 47.
    D. S. Boudreaux, R. R. Chance, J. F. Wolf, L. W. Shacklette, J. L. Bredas, B. Themans, J. M. Andre and R. Sibley, J. Chem. Phys. 85 (1986) 4584.CrossRefGoogle Scholar
  48. 48.
    G. Durand, G. Morin and B. Tremillon, Nouv. J. Chem. 3 (1979) 463.Google Scholar
  49. 49.
    R. Male and R. D. Allendoerfer, J. Phys. Chem. 92 (1988) 6237.CrossRefGoogle Scholar
  50. 50.
    H. S. Nalwa, Phys. Rev. B 39 (1989) 5964.CrossRefGoogle Scholar
  51. 51.
    L. W. Shacklette, J. F. Wolf, S. Gould and R. H. Baughman, J. Chem. Phys. 88 (1988) 3955.CrossRefGoogle Scholar
  52. 52.
    H. H. S. Javadi, S. P. Treat, J. M. Ginder, J. F. Wolf and A. J. Epstein, J. Phys. Chem. Solids 51 (1990) 107.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Hari Singh Nalwa
    • 1
  1. 1.Material Systems EngineeringTokyo University of Agriculture and TechnologyTokyoJapan

Personalised recommendations