Advertisement

Journal of Materials Science

, Volume 26, Issue 6, pp 1454–1458 | Cite as

Effect of the direction of the inclusions on the tested surface on susceptibility to pitting corrosion in stainless steels

  • Estela Rodríguez de Schiapparelli
  • Sixto Prado Cáceres
Papers

Abstract

A study was made of the induction time of pitting (ti) at constant potential in a stainless steel 316 L specimen in deareated NaCl solutions. The influence of the inclusion content in the steel on ti was examined, in particular the effect of the inclusions' orientation on the surface of the specimen tested. It was found that the induction time at constant potential and under similar experimental conditions depends on the inclusions' orientation on the test specimen surface; when the direction of the inclusions is transverse to the rolling direction, ti is shortened in comparison with the tested surface planes containing the rolling direction. The pitting initiation sites were the matrix-sulphide inclusions interphase. The microcavities associated with them could be preferential sites for pit nucleation.

Keywords

Polymer Stainless Steel Test Specimen Rolling Direction Surface Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Ecklund, J. Electrochem. Soc. 121 (1974) 467.Google Scholar
  2. 2.
    H. Henthorne, in“Sulfide Inclusions in Steel”, edited by J. J. Barbadillo and E. Snape (American Society for Metals, Ohio, 1975) pp. 445–58.Google Scholar
  3. 3.
    D. E. Williams, C. Westcatt and M. Fleishmann, J. Electrochemical. Soc. 132 (1985) 1797.Google Scholar
  4. 4.
    T. Shibata and T. Takeyama, Corrosion 33(7), (1977) 243.Google Scholar
  5. 5.
    B. E. Wilde and J. S. Armijo, ibid. 208 (1967) 208.Google Scholar
  6. 6.
    G. Ecklund, Jernkontorest Ann. 155 (1971) 637.Google Scholar
  7. 7.
    S. Szklarska, Z. Smialowska, A. Szummer and M. Yanik Czachor. Brit. Corrosion Sci. 5 (1970) 159.Google Scholar
  8. 8.
    L. L. Shreir (Ed.). “Corrosion”, Vol. 1,“Metal Environmental Reaction”, 2nd Edn (Newnes-Butterworths, London, Boston, 1976) 1: 182–191.Google Scholar
  9. 9.
    S. Szklarska and Z. Smialowska, in “Localized Corrosion”, (edited by R. W. Staehle et al.) (National Association of Corrosion Engineers, Houston, Texas, 1974) p. 312.Google Scholar
  10. 10.
    A. J. Sedriks, Int. Metals Rev. 28 (1983) 295.Google Scholar
  11. 11.
    E. Mola, J. Vincente, B. Mellein, R. Salvarezza, E. R. Schiapparelli and A. Arvía, J. Electrochem. Soc. 137 No. 5 (1990) 1384.Google Scholar
  12. 12.
    E. R. Schiapparelli, Non-Destructive Test. Com. 3 (1987) 39.Google Scholar
  13. 13.
    M. A. Streicher, This Journal 103 (1956) 375.Google Scholar
  14. 14.
    H. H. Uhlig, Trans. Amer. Inst. Min. Met. Eng. 140 (1940) 411.Google Scholar
  15. 15.
    S. Szklarska and Z. Smialowska, Corrosion 27 (1971) 223.Google Scholar
  16. 16.
    L. I. Freiman and L. Y. Kharitonava, Zashichita Metallov 8 (1972) 693.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • Estela Rodríguez de Schiapparelli
    • 1
  • Sixto Prado Cáceres
    • 2
  1. 1.Departamento Materiales-Gerencia DesarrolloComisión Nacional de Energí AtómicaBuenos AiresArgentina
  2. 2.Universidad Nacional de TrujilloTrujilloPeru

Personalised recommendations