Advertisement

Journal of Materials Science

, Volume 24, Issue 12, pp 4495–4504 | Cite as

Slip patterns in sliding sphere experiments on (110) single crystal Mn-Zn ferrite

  • A. Broese Van Groenou
  • S. E. Kadijk
Papers

Abstract

By sliding a 0.25 mm radius ruby sphere on a (1 1 0) Mn-Zn ferrite crystal grooves have been made at speeds from 0.4 to 400 μm sec−1, at loads from 1 to 7 N and after 1 to 100 passes. The temperature was varied from 20 to 290° C. As in indentations, the slip patterns are found on {1 0 0}, {1 1 1} and {1 1 0} slip systems, due to 〈1 1 0〉 slip along either a vertical Burgers vector or a vector under 60° with the normal. At low loads the inclined slip systems predominate. Cross-slip in the 60° systems is observed in several directions of sliding. Cross-slip occurs at higher loads on the vertical systems as in indentations. The threshold for both primary and secondary slip is speed dependent. At higher temperatures the main slip system is {1 0 0}, on both vertical and inclined systems. The relative importance of nucleation and propagation of slip is discussed. The groove depth varies with the same parameters as the line patterns, but a direct connection between number of lines and depth could not be made. The angular variation of the depth at low load has been related to the resolved shear stress for the slip systems involved. The result is a yield curve for slip along the inclined Burgers vectors.

Keywords

Shear Stress Ferrite High Load Slip System Ruby 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kugimiya, E. Hirota and N. Ito, IEEE Trans. Mag. MAG-10 (1974) 907–909.Google Scholar
  2. 2.
    T. Ito, J. Amer. Ceram. Soc. 54 (1971) 24–26.Google Scholar
  3. 3.
    K. Miyoshi and D. H. Buckley, Wear 66 (1981) 157–173.Google Scholar
  4. 4.
    M. Uemura, T. Hyono, M. Umeno and H. Kawabe, J. Mater. Sci. 21 (1986) 2257–2263.Google Scholar
  5. 5.
    T. Nishikawa, Y. Okamoto and N. Okada, J. Soc. Mat. Sci. Jpn 30 (1981) 337, 1012–1018.Google Scholar
  6. 6.
    S. L. Callahan, R. E. Tressler, D. W. Johnson and M. J. Reece, “Slip Systems in Manganese Zinc Ferrite Crystals, Deformation in ceramic materials II”, edited by R. E. Tressler and R. C. Bradt (Plenum, New York, 1983) pp. 177–186.Google Scholar
  7. 7.
    A. Broese Van Groenou and S. E. Kadijk, Acta Metall. 37 (1989) in press.Google Scholar
  8. 8.
    S. E. Kadijk and A. Broese Van Groenou, ibid. 37 (1989) in press.Google Scholar
  9. 9.
    G. M. Hamilton and L. E. Goodman, J. Appl. Mech. 33 (1966) 371–376.Google Scholar
  10. 10.
    G. M. Hamilton, Proc. Inst. Mech, Eng. 197C (1983) 53–59. (The equation for σ x due to a tangential load contains a term x 2 z 2/3; 3 should be S.)Google Scholar
  11. 11.
    M. V. Swain, Wear 48 (1978) 173–180.Google Scholar
  12. 12.
    M. V. Swain and B. R. Lawn, Phys. Status Solidi 35 (1969) 909–923.Google Scholar
  13. 13.
    A. Broese Van Groenou and S. E. Kadijk, Wear 126 (1988) 91–110.Google Scholar
  14. 14.
    N. Maan and A. Broese Van Groenou, Ibid. 42 (1977) 365–390.Google Scholar
  15. 15.
    A. Broese Van Groenou and S. E. Kadijk, Wear. 131 (1989) 353–364.Google Scholar
  16. 16.
    G. De With and J. P. M. Damen, J. Mater. Sci. 16 (1981) 838.Google Scholar
  17. 17.
    S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity” 3rd edn (McGraw-Hill, New York, 1970).Google Scholar
  18. 18.
    W. T. Chen, Int. J. Solids Structures 5 (1969) 191–214.Google Scholar
  19. 19.
    D. Kuhlmann-Wilsdorf, in “Fundamentals of Friction and Wear of Materials”, edited by D. A. Rigney (American Society for Metals, Metals Park, Ohio, 1980) pp. 119–186.Google Scholar
  20. 20.
    Y. J. Chang and D. Kuhlmann-Wilsdorf, in Proceedings International Conference on Wear of Materials, Reston, VA, April 11–14, 1983, edited by K. C. Ludema (American Society of Mechanical Engineers, New York, 1983) pp. 414–425.Google Scholar
  21. 21.
    M. Garfinkle and R. G. Garlick, Trans. Metall. Soc. ASME 242 (1968) 809–814.Google Scholar
  22. 22.
    G. Y. Chin, M. L. Green, L. G. Van Uitert and W. A. Hargreaves, J. Mater. Sci. 8 (1973) 1421–1425.Google Scholar
  23. 23.
    Y. S. Boyarskaya, D. Z. Grabko and E. I. Purich, ibid. 14 (1979) 737–741.Google Scholar
  24. 24.
    R. H. J. Hannink, D. L. Kohlstedt and M. J. Murray, Proc. R. Soc. A326 (1972) 409–420.Google Scholar
  25. 25.
    P. M. Sargent and T. F. Page, J. Mater. Sci., 20 (1985) 2388–2398.Google Scholar
  26. 26.
    C. A. Brookes, J. B. O'Neill and B. A. W. Redfern, Proc. R. Soc. A322 (1971) 73–88.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • A. Broese Van Groenou
    • 1
  • S. E. Kadijk
    • 1
  1. 1.Philips Research LaboratoriesJA EindhovenThe Netherlands

Personalised recommendations