Journal of Materials Science

, Volume 24, Issue 12, pp 4209–4219 | Cite as

Solid state NMR: Applications in high performance ceramics

  • Galen R. Hatfield
  • Keith R. Carduner


Solid state NMR is a new analytical tool that has proven to be both powerful and versatile in the characterization of ceramic systems. In this paper, we review many of the recent applications of NMR in ceramics, with an emphasis on applied research. Since solid-state NMR is a relatively new approach, a brief introduction into the technique is provided. Examples are given to illustrate how NMR can be used to (1) identify both crystalline and amorphous phases, (2) quantitate both crystalline and amorphous phases, (3) determine the structure of both crystalline and amorphous phases, (4) probe local structural order and (5) study the chemistry of ceramic systems. These capabilities are demonstrated in a series of brief applications including (1) a study of structure in a new ceramic material (LaSi3N5), (2) accurate phase composition analyses on commercial Si3N4 powders, (3) determination of structure and curing mechanisms in amorphous SiC fibres, (4) investigation of dispersion aid mechanisms, (5) determination of structure in several SiAION ceramics and (6) identification and quantitation of phases typically associated with the grain boundaries of Y2O3 sintered Si3N4.


Phase Composition Applied Research Y2O3 Amorphous Phasis Ceramic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. A. Fyfe, “Solid-State NMR for Chemists” (CFC Press, Guelph, 1983).Google Scholar
  2. 2.
    E. Oldfield and R. J. Kirkpatrick, Science 227 (1985) 1537.Google Scholar
  3. 3.
    G. E. Maciel, Science 226 (1984) 282.Google Scholar
  4. 4.
    E. Fukushima and S. B. W. Roeder, “Experimental Pulse NMR” (Addison-Wesley, London, 1981).Google Scholar
  5. 5.
    M. Mehring, “Principles of High Resolution NMR in Solids” (Springer, New York, 1983).Google Scholar
  6. 6.
    K. Kato, Z. Inoue, K. Kijima, I. Kawada, H. Tanaka and T. Yamane, J. Amer. Ceram. Soc. 58 (1975) 90.Google Scholar
  7. 7.
    R. Grun, Ada Crystallogr. B35 (1979) 800.Google Scholar
  8. 8.
    R. C. Marshall, J. W. Faust and C. E. Ryan, “Silicon Carbide” (University of South Carolina Press, Columbia, 1973).Google Scholar
  9. 9.
    G. R. Finlay, J. S. Hartman, M. F. Richardson and B. L. Williams, J. Chem. Soc., Chem. Commun. (1985) 159.Google Scholar
  10. 10.
    J. S. Hartman, M. F. Richardson, B. L. Sherriff and B. G. Winsborrow. J. Amer. Chem. Soc. 109 (1987) 6059.Google Scholar
  11. 11.
    J. R. Guth and W. T. Petuskey. J. Phys. Chem. 91 (1987) 5361.Google Scholar
  12. 12.
    J. V. Smith and C. S. Blackwell, Nature 303 (1983) 223.Google Scholar
  13. 13.
    A. R. Grimmer, F. Von Lampe, M. Magi and E. Lippmaa, Mh. Chem. 114 (1983) 1053, 115 (1984) 561.Google Scholar
  14. 14.
    G. Engelhardt and R. Radeglia, Chem. Phys. Lett. 108 (1984) 271.Google Scholar
  15. 15.
    R. Radeglia and G. Engelhardt, Chem. Phys. Lett. 114 (1985) 28.Google Scholar
  16. 16.
    S. Ramdas and J. Klinowski, Nature 308 (1984) 521.Google Scholar
  17. 17.
    N. Janes and E. Oldfield, J. Amer. Chem. Soc. 107 (1985) 6769.Google Scholar
  18. 18.
    E. Lippmaa, M. Magi, A. Samoson, G. Engelhardt and A. R. Grimmer, ibid. 102 (1980) 4889.Google Scholar
  19. 19.
    E. Lippmaa, M. Magi, A. Samoson, M. Tarmak and G. Engelhardt, ibid. 103 (1981) 4992.Google Scholar
  20. 20.
    A. R. Grimmer, Chem. Phys. Lett. 119 (1985) 416.Google Scholar
  21. 21.
    M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt and A. R. Grimmer, J. Phys. Chem. 88 (1984) 1518.Google Scholar
  22. 22.
    B. L. Sherriff and H. D. Grundy, Nature 332 (1988) 819.Google Scholar
  23. 23.
    K. A. Smith, R. J. Kirkpatrick, E. Oldfield and D. M. Henderson, Amer. Miner. 68 (1983) 1206.Google Scholar
  24. 24.
    A. R. Grimmer and R. Radeglia, Chem. Phys. Lett. 106 (1984) 262.Google Scholar
  25. 25.
    J. M. Newsam, J. Phys. Chem. 89 (1985) 2002.Google Scholar
  26. 26.
    J. B. Higgins and D. E. Woessner, Eos 63 (1982) 1139.Google Scholar
  27. 27.
    J. Mason, “Multinuclear NMR” (Plenum, New York, 1984).Google Scholar
  28. 28.
    R. K. Harris and B. E. Mann, “NMR and the Periodic Table” (Academic, New York, 1978).Google Scholar
  29. 29.
    T. Axenrod and G. A. Webb, “Nuclear Magnetic Resonance Spectroscopy of Nuclei Other Than Protons” (Wiley, New York, 1974).Google Scholar
  30. 30.
    R. Dupree and M. E. Smith, Chem. Phys. Lett. 148 (1988) 41.Google Scholar
  31. 31.
    Z. Inoue, J. Mater. Sci. Lett. 4 (1985) 656.Google Scholar
  32. 32.
    Z. Inoue, M. Mitomo and N. Ii, J. Mater. Sci. 15 (1980) 2915.Google Scholar
  33. 33.
    J. Yamanis, G. Hatfield. W. Hammond, B. Li and F. Reidinger, submitted.Google Scholar
  34. 34.
    T. G. Kalamasz, G. Goth, R. P. Worthen and A. E. Pasto, Automotive Engng 96 (1988) 63.Google Scholar
  35. 35.
    M. G. Milberg, Chemtech 17 (1987) 552.Google Scholar
  36. 36.
    K. R. Carduner, R. O. Carter, M. E. Milberg and G. M. Crosbie, Anal. Chem. 59 (1987) 2794.Google Scholar
  37. 37.
    H. W. Rauch, W. H. Sutton and L. R. McCreight, “Ceramic Fibers and Fibrous Composite Materials” (Academic, New York, 1968).Google Scholar
  38. 38.
    T. Taki, K. Okamura, M. Sato, T. Sequchi and S. Kawanishi, J. Mater. Sci. Lett. 7 (1988) 209.Google Scholar
  39. 39.
    T. Taki, S. Maeda, K. Okamura, M. Sato and T. Matsuzawa, ibid. 6 (1987) 826.Google Scholar
  40. 40.
    J. Lipowitz and G. L. Turner, Polym. Prepr. 29 (1988) 74.Google Scholar
  41. 41.
    K. E. Inknott, S. M. Wharry and D. J. O' Donnell, Mater. Res. Soc. Symp. Proc. 73 (1986) 165.Google Scholar
  42. 42.
    J. Lipowitz, J. A. Rahe and T. M. Carr, ACS Symp. Ser. 360 (1988) 156.Google Scholar
  43. 43.
    R. West and J. Maxka, ibid. 360 (1988) 6.Google Scholar
  44. 44.
    C. H. Yoder and C. D. Schaeffer, “Introduction to Multinuclear NMR” (Benjamin/Cummings, Menlo Park, 1987).Google Scholar
  45. 45.
    M. Villa, K. R. Carduner and G. Chiodelli, J. Solid State Chem. 69 (1987) 19.Google Scholar
  46. 46.
    R. S. Aujla, G. Leng-Ward, M. H. Lewis, E. F. W. Seymour, G. A. Styles and G. W. West, Phil. Mag. B54 (1986) L51.Google Scholar
  47. 47.
    J. Klinowski, J. M. Thomas, D. P. Thompson, P. Korgul, K. H. Jack, C. A. Fyfe and G. C. Gobbi, Polyhedron 3 (1984) 1267.Google Scholar
  48. 48.
    N. D. Butler, R. Dupree and M. H. Lewis, J. Mater. Sci. Lett. 3 (1984) 469.Google Scholar
  49. 49.
    B. C. Gerstein and A. T. Nicol, J. Non-Cryst. Solids 75 (1985) 423.Google Scholar
  50. 50.
    R. Dupree, M. H. Lewis, G. Leng-Ward and D. S. Williams, J. Mater. Sci. Lett. 4 (1985) 393.Google Scholar
  51. 51.
    K. A. Smith, R. J. Kirkpatrick, E. Oldfield and D. M. Henderson, Amer. Mineral. 68 (1983) 1206.Google Scholar
  52. 52.
    R. Dupree, M. H. Lewis and M. E. Smith, J. Amer. Chem. Soc. 110 (1988) 1083.Google Scholar
  53. 53.
    Idem. J. Appl. Crystallogr. 21 (1988) 109.Google Scholar
  54. 54.
    K. R. Carduner, R. O. Carter, M. J. Rokosz, G. M. Crosbie and E. D. Stiles, Chem. Mater 1 (1989) 302.Google Scholar
  55. 55.
    R. Dupree, M. H. Lewis and M. E. Smith. J. Amer. Chem. Soc. 60 (1988) 249.Google Scholar
  56. 56.
    K. R. Carduner, J. L. Gerlock and G. Hatfield, in progress.Google Scholar
  57. 57.
    E. Oldfield, R. A. Kinsey, K. A. Smith, J. A. Nichols and R. J. Kirkpatrick, J. Magn. Reson. 51 (1983) 325.Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • Galen R. Hatfield
    • 1
  • Keith R. Carduner
    • 2
  1. 1.Washington Research CenterW. R. Grace & Co.ColumbiaUSA
  2. 2.Scientific Research LaboratoryFord Motor CompanyDearbornUSA

Personalised recommendations