Skip to main content
Log in

Deformation and fracture behaviour of wheat starch plasticized with glucose and water

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical properties of wheat starch and the effects of plasticizers upon them are studied in flexure at 293 K. For compositions low in water and glucose the material is glassy, with a flexural modulus between 0.7 and 5.0 GPa. The addition of water and glucose to wheat starch plasticizes the material through its glass transition into a rubbery state. The flexural moduli of the rubbery samples are in the range 50 to 200 MPa, which is indicative of a partially crystalline polymer. For starch-water mixtures the glass transition occur in the water content range 18 to 20%. The addition of glucose progressively shifts the glass transition to lower water contents. At strains below 0.04 brittle failure is only observed in the glassy samples. The surface morphology of the fractured samples shows features typical of pure synthetic glassy polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Harper, “Extrusion of Foods” (CRC, Boca Raton, 1981).

    Google Scholar 

  2. M. C. Bourne, “Food Texture and Viscosity: Concept and Measurement” (Academic, New York, 1982).

    Google Scholar 

  3. J. Andriev and A. -A. Stamatopoulos, Lebensm.- Wiss. u. -Technol. 19 (1986) 448.

    Google Scholar 

  4. R. J. Hutchinson, S. A. Mantle and A. C. Smith, J. Mater. Sci. 24 (1989) 3249.

    Article  Google Scholar 

  5. K. J. Zeleznak and R. C. Hoseney, Cereal Chem. 63 (1987) 121.

    Google Scholar 

  6. P. Colonna and C. Mercier, Carb. Polym. 5 (1983) 189.

    Google Scholar 

  7. A. Senouci and A. C. Smith, Rheologica Acta 27 (1988) 546.

    Article  CAS  Google Scholar 

  8. BS2782: Part 3: method 335A (1978).

  9. BS2782: Part 10: method 1005 (1977).

  10. L. Greenspan, J. Res. Nat. Bureau Stand. A: Phys. Chem. 81a (1977) 89.

    Article  Google Scholar 

  11. R. P. Brown, “Handbook of Plastics Test Methods” 2nd Edn (Godwin, London, 1981) p. 118.

    Google Scholar 

  12. R. D. Heap and R. H. Norman, “Flexural Testing of Plastics” (Plastics Institute, London, 1969).

    Google Scholar 

  13. P. Colonna, J. L. Doublier, J. P. Melcion, F. de Monredon and C. Mercier, Cereal Chem. 61 (1984) 538.

    CAS  Google Scholar 

  14. M. C. Shen and A. Eisenberg, Prog. Solid State. Chem. 3 (1966) 407.

    Article  Google Scholar 

  15. P. D. Orford, R. Parker, S. G. Ring and A. C. Smith, Int. J. Biol. Macromol. 11 (1989) 91.

    Article  CAS  Google Scholar 

  16. C. Mestres, P. Colonna and A. Buleon, J. Cereal Sci. 7 (1988) 123.

    Article  Google Scholar 

  17. E. H. Andrews, “Fracture in Polymers” (Oliver & Boyd, Edinburgh, 1968).

    Google Scholar 

  18. R. P. Kusy and D. T. Turner, Polymer 18 (1977) 391.

    Article  CAS  Google Scholar 

  19. R. Van Noort and B. Ellis, J. Mater. Sci. Lett. 3 (1984) 1031.

    Article  Google Scholar 

  20. T. -Y. Pan, R. E. Robertson and F. E. Filisko, J. Mater. Sci. 24 (1989) 3635.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollett, A.L., Parker, R. & Smith, A.C. Deformation and fracture behaviour of wheat starch plasticized with glucose and water. J Mater Sci 26, 1351–1356 (1991). https://doi.org/10.1007/BF00544476

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544476

Keywords

Navigation