Skip to main content
Log in

Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The pyrolysis of a PCS precursor has been studied up to 1600 °C through the analysis of the gas phase and the characterization of the solid residue by thermogravimetric analysis, extended X-ray absorption fine structure, electron spectrocopy for chemical analysis, transmission electron microscopy, X-ray diffraction, Raman and Auger electron spectroscopy microanalyses, as well as electrical conductivity measurements. The pyrolysis mechanism involves three main steps: (1) an organometallic mineral transition (550 < T p < 800 °C) leading to an amorphous hydrogenated solid built on tetrahedral SiC, Si02 and silicon oxycarbide entities, (2) a nucleation of SiC (1000 < T p < 1200 °C) resulting in SiC nuclei (less than 3 nm in size) surrounded with aromatic carbon layers, and (3) a SiC grain-size coarsening (T p > 1400 °C) consuming the residual amorphous phases and giving rise simultaneously to a probable evolution of SiO and CO. The formation of free carbon results in a sharp insulator-quasimetal transition with a percolation effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Rice, Ceram. Bull. 62 (1983) 889.

    CAS  Google Scholar 

  2. S. Yajima, in “Handbook of Composites” Vol. 1, “Strong Fibers” edited by W. Watt and B. V. Perov (Elsevier Science, New York, 1985) p. 201.

    Google Scholar 

  3. Y. Hasegawa, M. Iimuraand S. Yajima, J. Mater. Sci. 15 (1980) 720.

    Article  CAS  Google Scholar 

  4. T. Mah, N. L. Hecht, D. E. McCallum, J. R. Hoenigman, H. M. Kim, A. P. Katz and H. A. Lipsitt, ibid. 19 (1984) 1191.

    Article  CAS  Google Scholar 

  5. G. Simon and A. R. Bunsell, ibid. 19 (1984) 3649.

    Article  CAS  Google Scholar 

  6. Idem., ibid. 19 (1984) 3658.

    Article  CAS  Google Scholar 

  7. T. J. Clark, R. Arons, J. Rabe and J. B. Stamatoff, Ceram. Engng Sci. Proc. 6 (1985) 576.

    Article  CAS  Google Scholar 

  8. T. J. Clark, M. Jaffe, J. Rabe and N. R. Langley, ibid. 7 (1986) 901.

    Article  CAS  Google Scholar 

  9. L. C. Sawyer, R. T. Chin, F. Haimback, P. J. Harget, E. R. Prack and M. Jaffe, ibid. 7 (1986) 914.

    Article  CAS  Google Scholar 

  10. K. Okamura, Composites 18 (1987) 107.

    Article  CAS  Google Scholar 

  11. A. S. Fareed, P. Fang, J. Koczak and F. M. Ko, Ceram. Bull. 66 (1987) 353.

    CAS  Google Scholar 

  12. L. C. Sawyer, M. Jamieson, D. Brikowski, M. I. Haider and R. T. Chen, J. Amer. Ceram. Soc. 70 (1987) 798.

    Article  CAS  Google Scholar 

  13. C. Laffon, P. Lagarde, A. M. Flank, R. Hagege, P. Olry, J. Cotteret, S. Dixmier, M. Laridjani, A. P. Legrand and B. Homelle, J. Mater. Sci. 24 (1989) 1503.

    Article  CAS  Google Scholar 

  14. Y. Hasegawa and K. Okamura, ibid. 18 (1983) 3633.

    Article  CAS  Google Scholar 

  15. S. Yajima, Y. Hasegawa, J. Hayashi and M. Iimura, ibid. 13 (1978) 2569.

    CAS  Google Scholar 

  16. Y. Hasegawa and K. Okamura, ibid. 21 (1986) 321.

    Article  CAS  Google Scholar 

  17. J. C. Sarthou, University thesis 155, Bordeaux (1984).

  18. J. J. Poupeau, D. Abbe and J. Jamet, ONERA Report (1982).

  19. L. Porte and A. Sartre, J. Mater. Sci. 24 (1989) 271.

    Article  CAS  Google Scholar 

  20. Y. Misokawa, K. M. Geib and C. W. Winsem, J. Vac. Sci. Technol. A 4 (1986) 1696.

    Article  Google Scholar 

  21. J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.

    Article  CAS  Google Scholar 

  22. D. Bouchier and A. Bosseboeuf, Thin Solid Films 139 (1986) 95.

    Article  Google Scholar 

  23. P. Lespade, A. Marchand, M. Couzi and F. Cruege, Carbon 22 (1984) 375.

    Article  CAS  Google Scholar 

  24. F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53 (1970) 1126.

    Article  CAS  Google Scholar 

  25. B. S. Elman, M. S. Dresselhaus, G. Dresselhaus, E. W. Maby and H. Mazurek, Phys. Rev. B 24 (1981) 1027.

    Article  CAS  Google Scholar 

  26. T. C. Chieu, M. S. Dresselhaus and M. Endo, ibid. 26 (1982) 5867.

    Article  CAS  Google Scholar 

  27. M. Gorman and S. A. Solin, Solid State Commun. 15 (1974) 761.

    Article  CAS  Google Scholar 

  28. Y. Inoue, S. Nakashima, A. Mitsuishi, S. Tabata and S. Tsuboi, ibid. 48 (1983) 1071.

    CAS  Google Scholar 

  29. A. Morimoto, T. Kataoka, M. Kumeda and T. Shimizu, Philos. Mag. B 50 (1984) 517.

    Article  CAS  Google Scholar 

  30. P. Martineau, M. Lahaye, R. Pailler, R. Naslain, M. Couzi and F. Cruege, J. Mater. Sci. 19 (1984) 2731.

    Article  CAS  Google Scholar 

  31. M. Monthioux, A. Oberlin and E. Bouillon, Compos. Sci. Technol. 37 (1990) 21.

    Article  Google Scholar 

  32. H. A. Pohl, in “Modern Aspects of the Vitrous State”, Vol. 2, edited by J. D. Mackenzie (London, 1972) p. 72.

  33. M. Rodot, “Les Matériaux Semi Conducteurs” Vol. 2 (Dunod, Paris, 1965).

    Google Scholar 

  34. F. Carmona, P. Delhaes, F. Barreau, D. Ordiera, R. Canet and L. Lafeychine, J. Phys. 41 (1980) 531.

    Google Scholar 

  35. S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rawcliffe, J. Amer. Ceram. Soc. 71 (1988) C-132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouillon, E., Langlais, F., Pailler, R. et al. Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material. J Mater Sci 26, 1333–1345 (1991). https://doi.org/10.1007/BF00544474

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544474

Keywords

Navigation