Journal of Materials Science

, Volume 26, Issue 5, pp 1266–1276 | Cite as

Microstructure — cooling rate correlations in melt-spun alloys

  • B. Cantor
  • W. T. Kim
  • B. P. Bewlay
  • A. G. Gillen


Photocalorimetric techniques have been used to measure top surface temperatures during melt spinning of Ni-Al and 316L stainless steel ribbons, in order to investigate the effect of cooling rate on the melt-spun alloy microstructures. Cooling conditions during melt-spinning are found to be near-Newtonian, with mean cooling rates, heat transfer coefficients and Nusselt numbers in the range 4×104 to 5×105 K sec−1, 5×104 to 3× 105 Wm−2K−1 and 0.07 to 0.22, respectively, for wheel speeds in the range 4 to 36 m sec−1. The cooling rate during melt-spinning is directly proportional to the wheel speed and inversely proportional to the square of the ribbon thickness. Melt-spun Ni-Al and 316L stainless steel ribbons exhibit a columnar through-thickness solidification microstructure, with a segregation-free region adjacent to the wheel surface. Solidification takes place by heterogeneous nucleation of the undercooled liquid on the wheel surface, followed by partitionless solidification during recalescence, and finally cellular breakdown and segregated solidification. The columnar grain size decreases and the fractional segregation-free thickness increases with increasing wheel speed and cooling rate, indicating that the nucleation undercooling in the liquid is proportional to the cooling rate.


Heat Transfer Cool Rate Heat Transfer Coefficient Nusselt Number Heterogeneous Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Cantor (ed.), “Rapidly Quenched Metals III” (Metals Society, London, 1978).Google Scholar
  2. 2.
    T. Masumoto and K. Suzuki (eds), “Rapidly Quenched Metals IV” (Japan Institute of Metals, Sendai, 1982).Google Scholar
  3. 3.
    S. Steeb and H. Warlimont (eds), “Rapidly Quenched Metals V” (North-Holland, Amsterdam, 1985).Google Scholar
  4. 4.
    R. W. Cochrane and J. O. Strom-Olsen (eds), “Rapidly Quenched Metals 6” (Elsevier, London, 1988).Google Scholar
  5. 5.
    B. Cantor, in “Science and Technology of the Undercooled Melt”, edited by P. R. Sahm, H. Jones and C. M. Adam (Nijhoff, Dordrecht, 1986) p. 3.CrossRefGoogle Scholar
  6. 6.
    Idem, in “Rapidly Solidified Amorphous and Crystalline Alloys”, edited by B. H. Kear and B. C. Giessen (Elsevier North-Holland, New York, 1982) p. 317.Google Scholar
  7. 7.
    H. Jones, Rep. Prog. Phys. 36 (1973) 1425.CrossRefGoogle Scholar
  8. 8.
    Idem, “Rapid Solidification of Metals and Alloys” (Institution of Metallurgists, London, 1982).Google Scholar
  9. 9.
    M. Hansen and K. Anderko, “The Constitution of Binary Alloys” (McGraw-Hill, New York, 1958).CrossRefGoogle Scholar
  10. 10.
    B. P. Bewlay and B. Cantor, Int. J. Rapid Solidifn 2 (1986) 107.Google Scholar
  11. 11.
    C. Hayzelden, J. J. Rayment and B. Cantor, Acta Metall. 31 (1983) 379.CrossRefGoogle Scholar
  12. 12.
    A. G. Gillen and B. Cantor, ibid. 33 (1985) 1813.CrossRefGoogle Scholar
  13. 13.
    A. J. B. Vincent, B. P. Bewlay, B. Cantor, R. J. Zabala, R. P. LaForce, S. C. Huang and L. A. Johnson, J. Mater. Sci. Lett. 6 (1987) 121.CrossRefGoogle Scholar
  14. 14.
    H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids” (Oxford University Press, Oxford, 1959).Google Scholar
  15. 15.
    C. Hayzelden, DPhil thesis, University of Sussex (1984).Google Scholar
  16. 16.
    T. W. Clyne, Metall. Trans. 15B (1984) 369.CrossRefGoogle Scholar
  17. 17.
    R. C. Ruhl, Mater. Sci. Eng. 1 (1967) 313.CrossRefGoogle Scholar
  18. 18.
    J. H. Vincent, J. G. Herbertson and H. A. Davies, in T. Masumoto and K. Suzuki (eds), “Rapidly Quenched Metals IV”, Vol. 1 (Japan Institute of Metals, Sendai, 1982) p. 77.Google Scholar
  19. 19.
    A. G. Gillen, T. C. Willis and B. Cantor, to be published.Google Scholar
  20. 20.
    W. J. Boettinger, D. Schechtman, R. J. Schaeffer and F. S. Biancello, Metall. Trans. 15A (1984) 55.CrossRefGoogle Scholar
  21. 21.
    M. Hillert and B. Sundman, Acta Metall. 24 (1976) 731.CrossRefGoogle Scholar
  22. 22.
    J. C. Baker and J. W. Cahn, ibid. 17 (1969) 575.CrossRefGoogle Scholar
  23. 23.
    D. Turnbull, J. Appl. Phys. 21 (1950) 1022.CrossRefGoogle Scholar
  24. 24.
    B. Cantor and R. D. Doherty, Acta Metall. 27 (1979) 33.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1991

Authors and Affiliations

  • B. Cantor
    • 1
  • W. T. Kim
    • 1
  • B. P. Bewlay
    • 1
  • A. G. Gillen
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK

Personalised recommendations