Skip to main content
Log in

The kinematics of an active zone during fatigue crack layer growth in polystyrene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An investigation of the kinematics of an active zone (or process zone) evolution in polystyrene during fatigue fracture is reported. Experiments were conducted on tension-tension singleedge-notched specimens of 0.25 mm thickness. Craze characterization was carried out on thinned sections of the active zone at six consecutive configurations. Analysis consisted of quantitative comparison of ratios of the inertia moments of the active zone at consecutive configurations. The results indicate that for the particular loading history considered, damage evolution can be approximated by a linear transformation of the space variables. The fracture process can be described by the translation and deformation of the active zone. Consequently, the corresponding energy release rates can be expressed by the J 1, M and N ij integrals. The results of this analysis agree with the kinematics proposed by the crack layer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hellan, “Introduction to Fracture Mechanics” (McGraw-Hill, New York, 1984).

    Google Scholar 

  2. H. E. Andrews and J. B. Walker, Proc. Roy. Soc. A325 (1971) 57.

    Article  Google Scholar 

  3. E. P. Bretz, R. W. Bretz, R. W. Hertzderg and J. A. Manson, Polymer 22 (1981) 1272.

    Article  CAS  Google Scholar 

  4. A. Chudnovsky, A. Moet, R. J. Bankert and T. M. Takemori, J. Appl. Phys. 54 (1985) 5562.

    Article  Google Scholar 

  5. A. Sandt and E. Hornbogen, J. Mater. Sci. 19 (1981) 2915.

    Article  Google Scholar 

  6. J. Botsis, A. Chudnovsky and A. Moet, Int. J. Fract. 33 (1987) 263.

    Article  CAS  Google Scholar 

  7. R. H. Hoagland, T. G. Hahn and A. R. Rosenfield, Rock Mech. 5 (1973) 77.

    Article  Google Scholar 

  8. M. T. Takemori and R. P. Kambour, J. Mater. Sci. 16 (1981) 1110.

    Article  Google Scholar 

  9. N. J. Mills and J. N. Walker, ibid. 15 (1980) 1840.

    Google Scholar 

  10. W. E. Andrews and S. P. Barnes, in “International Conference on Deformation Yield and Fracture of Polymers” (The Plastics and Rubber Institute, Cambridge, UK, 1982) p. 8.1.

    Google Scholar 

  11. N. Haddaoui, A. Chudnovsky and A. Moet, Polymer 27 (1985) 1377.

    Article  Google Scholar 

  12. G. A. Evans and E. A. Heuer, J. Amer. Ceram. Soc. 63 (1980) 246.

    Google Scholar 

  13. A. Chudnovsky and M. Bessendorf, “Crack Layer Morphology and Toughness Characterization in Steels”, NASA Report 168 154 (1983).

  14. R. N. Lang, T. A. Manson and R. W. Hertzberg, ACS Organ. Coating Appl. Polym. Sci. 49 (1983) 48.

    Google Scholar 

  15. P. X. Nguyen and A. Moet, J. Vinyl Tech. 7 (1985) 140.

    Article  CAS  Google Scholar 

  16. Idem, Polym. Composites 8 (1987) 298.

    Article  CAS  Google Scholar 

  17. E. F. Burech, “Fracture”, Vol. 3 (Pergamon, London, 1972) p. 929.

    Google Scholar 

  18. J. N. Claussen, J. Amer. Ceram. Soc. 59 (1976) 49.

    Article  CAS  Google Scholar 

  19. A. Chudnovsky, “Crack Layer Theory”, NASA Report 174636 (1984).

  20. Idem, “Crack Layer Theory”, in 10th US National Conference on Applied Mechanics, edited by J. P. Lamb (ASME, Austin, Texas, 1986) p. 97.

    Google Scholar 

  21. A. Chudnovsky, V. Dunaevsky and V. A. Khandogi, Arch. Mech. 30 (1978) 165.

    Google Scholar 

  22. A. Chudnovsky and B. Gommerstadt, Int. J. Solids Struct. 22 (1986) 721.

    Article  Google Scholar 

  23. S. Aoki, K. Kishimoto and M. Sakata, J. Appl. Mech. 48 (1981) 825.

    Article  Google Scholar 

  24. V. A. Khandogi and A. Chudnovsky, in “Dynamics and Strength of Aircraft Structures” (edited by K. M. Kurshin, in Russian) (Novosirbisk, 1978) p. 148.

  25. S. A. Holik, R. P. Kambour, D. G. Fink and S. Y. Hobbs, in “Microstructural Science”, Vol. 7, edited by LeMay, Fallon and McCall (Elsevier, North Holand, 1978) p. 357.

    Google Scholar 

  26. J. Botsis, Polymer 29 (1988) 457.

    Article  CAS  Google Scholar 

  27. X. Q. Zhang and J. Botsis, to be published.

  28. J. Botsis, J. Mater. Sci. 24 (1989) 2018.

    Article  CAS  Google Scholar 

  29. P. R. Bevington, “Data Reduction and Error Analysis for the Physical Sciences” (McGraw-Hill, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botsis, J., Zhang, X.Q. The kinematics of an active zone during fatigue crack layer growth in polystyrene. J Mater Sci 26, 1253–1258 (1991). https://doi.org/10.1007/BF00544463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544463

Keywords

Navigation