Skip to main content
Log in

Non-linear concentration-dependent electrical properties of some semiconducting vanadate glasses

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Characterizations of (50 − x) P2O5-x M-50V2O5 (M = Bi2O3, Sb2O3, and GeO2 and x=0 to 45 mol% M) and P2O5-Bi2O3 semiconducting oxide glasses have been made from studies of electrical conductivities (both a.c. and d.c.) in the temperature range 77 to 400 K. All these glasses showed some interesting non-linear variation of d.c. and a.c. conductivity, together with other properties for particular values of M (between 20 and 30 mol% M). Because the non-vanadate (1−x) P2O5-x Bi2O3 glasses also showed similar conductivity anomaly (minimum) around 25 mol% Bi2O3 with a corresponding maximum in the activation energy (W), it is concluded (in contradiction to earlier suggestions) that not only the ratio β (= V5+/V4+) but also the network-former ions in the vanadate glasses make a substantial contribution to the anomalous concentration variation of the physical properties of these glasses. The electrical conduction in these glasses is found to be mainly due to hopping of polarons in the adiabatic approximation. At low temperature, the d.c. conductivity obeys Mott's T −1/4 behaviour. The a.c. conductivity obeying the general ωs law (exponent s lying between 0.85 and 0.98) supports the theory based on the hopping over the barrier model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Mackenzie, “Modern Aspects of Vitreous State” (Butterworth, London, 1964).

    Google Scholar 

  2. H. Fritzsche, in “Amorphous and Liquid Semiconductors”, edited by J. Tauc (Plenum Press, London, 1974) p. 313.

    Chapter  Google Scholar 

  3. H. Hirashima, Y. Watanabe and T. Yoshida, J. Non-Cryst. Solids 95 (1987) 825.

    Article  Google Scholar 

  4. T. Yoshida, H. Hirashima and M. Kato, Yogyo-Kyokai-Shi 93 (1985) 244.

    Article  CAS  Google Scholar 

  5. A. Ghosh and B. K. Chaudhuri, Ind. J. Phys. 58A (1984) 62.

    CAS  Google Scholar 

  6. Idem., in “Metallic and Semiconducting Glasses-II”, edited by A. K. Bhatnagar (Trans. Tech, Switzerland, 1986) p. 515.

    Google Scholar 

  7. Bh. V. J. Rao, J. Amer. Ceram. Soc. 49 (1966) 605.

    Article  Google Scholar 

  8. Idem., ibid. 48 (1965) 311.

    Article  Google Scholar 

  9. A. Ghosh and B. K. Chaudhuri, J. Non-Cryst. Solids 83 (1986) 151.

    Article  CAS  Google Scholar 

  10. Idem., J. Mater. Sci. 22 (1987) 2369.

    Article  CAS  Google Scholar 

  11. M. Sayer and A. Mansingh, Phys. Rev. B6 (1972) 4629.

    Article  Google Scholar 

  12. V. K. Dhawan, A. Mansingh and M. Sayer, J. Non-Cryst. Solids 51 (1982) 87.

    Article  CAS  Google Scholar 

  13. G. S. Linsley, A. E. Owen and F. M. Hayatee, ibid. 4 (1970) 208.

    Article  CAS  Google Scholar 

  14. C. H. Chung, J. D. Mackenzie and L. Murawski, Rev. Chimie Minerale 16 (1979) 308.

    CAS  Google Scholar 

  15. L. Murawski, C. -H. Chung and J. D. Mackenzie, J. Non-Cryst. Solids 32 (1979) 91.

    Article  CAS  Google Scholar 

  16. C. H. Chung and J. D. Mackenzie, ibid. 42 (1980) 357.

    Article  CAS  Google Scholar 

  17. J. Appel, in “Solid State Physics”, edited by F. Seitz, D. Turnbull and H. Ehrenreich, Vol. 21 (Academic Press, London and New York, 1968) p. 193.

    Google Scholar 

  18. R. M. Brown, PhD thesis, University of Illinois, 1966.

  19. K. K. Som and B. K. Chaudhuri, J. Mater. Sci. 25 (1990) 000.

    Google Scholar 

  20. B. K. Chaudhuri, K. Chaudhuri and K. K. Som, J. Phys. Chem. Solids 50 (1989) 1137.

    Article  CAS  Google Scholar 

  21. B. K. Chaudhuri, unpublished.

  22. I. G. Austin and N. F. Mott, Adv. Phys. 18 (1969) 41.

    Article  CAS  Google Scholar 

  23. N. F. Mott, J. Non-Cryst. Solids 1 (1968) 1.

    Article  CAS  Google Scholar 

  24. N. F. Mott and E. A. Davis, “Electronic Processes in NonCrystalline Materials”, 2nd Edn (Clarendon, Oxford, 1979).

    Google Scholar 

  25. A. Miller and E. Abrahams, Phys. Rev. 120 (1960) 745.

    Article  CAS  Google Scholar 

  26. L. Murawski and O. Gzowski, Acta Phys. Polanica A50 (1976) 463.

    CAS  Google Scholar 

  27. L. Pauling, “Nature of Chemical Bonds and the Structure of Molecules and Crystals”, 3rd Edn (Cornell University Press, Ithaca, New York, 1960) p. 98.

    Google Scholar 

  28. A. Mansingh, J. K. Vaid and R. P. Tandon, J. Phys. C. Solid State Phys. 8 (1975) 1023.

    Article  CAS  Google Scholar 

  29. A. Mansingh, V. K. Dhawan and M. Sayer, Phil. Mag. B 48 (1983) 215.

    Article  CAS  Google Scholar 

  30. G. E. Pike, Phys. Rev. B6 (1972) 1572.

    Article  Google Scholar 

  31. S. R. Elliott, Phil. Mag. 36 (1977) 1291.

    Article  CAS  Google Scholar 

  32. Idem., Adv. Phys. 36 (1987) 135.

    Article  CAS  Google Scholar 

  33. A. R. Long, Adv. Phys. 31 (1982) 553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Som, K.K., Chaudhuri, B.K. Non-linear concentration-dependent electrical properties of some semiconducting vanadate glasses. J Mater Sci 26, 1228–1235 (1991). https://doi.org/10.1007/BF00544460

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544460

Keywords

Navigation