Skip to main content
Log in

Strength of thermoplastic elastomers from rubber-polyolefin blends

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The strength of different thermoplastic elastomers of varying compositions and interactions has been examined over a wide range of rates and temperatures and for a wide variety of test configurations. Fracture energy was calculated from various test specimens and found to be similar, and independent of the test configuration. Fracture energy values lie between 0.8 and 120kJm−2. The behaviour could be compared with that of rubbers. However, for a trouser-tear test piece, the fracture energy increases with increasing thickness of the torn path in the very small thickness region, as for the fracture of polyethylene. The fracture surface morphology of various composites indicates different mechanisms of crack propagation. The tensile rupture data over a wide range of rates and temperatures could be represented by a single parabolic curve — the “failure envelope”. The maximum elongation at break and tensile strength of the composites are related to the modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Roy Choudhury and A. K. Bhowmick, J. Mater. Sci. 23 (1988) 2187.

    Google Scholar 

  2. A. Y. Coran, in “Handbook of Elastomers — New Development and Technology”, edited by A. K. Bhowmick and H. L. Stephens (Marcel Dekker, New York, 1988) p. 249.

    Google Scholar 

  3. R. S. Rivlin and A. G. Thomas, J. Polym. Sci. 10 (1953) 291.

    Google Scholar 

  4. A. G. Thomas, J. Appl. Polym. Sci. 3 (1960) 168.

    Google Scholar 

  5. A. Ahagon, A. N. Gent, H. J. Kim and Y. Kumagai, Rubb. Chem. Technol. 48 (1975) 896.

    Google Scholar 

  6. G. E. Anderton and L. R. G. Treloar, J. Mater. Sci. 6 (1971) 562.

    Google Scholar 

  7. G. L. A. Sims, J. Maler. Sci. 10 (1975) 647.

    Google Scholar 

  8. P. I. Vincent, in “Encyclopedia of Polymer Science and Technology”, Vol. 7, edited by N. M. Bikales (Interscience, New York, 1967) p. 292.

    Google Scholar 

  9. A. K. Bhowmick and A. N. Gent, Rubb. Chem. Technol. 56 (1983) 845.

    Google Scholar 

  10. A. K. Bhowmick, J. Mater. Sci. 21 (1986) 3927.

    Google Scholar 

  11. T. L. Smith, J. Polym. Sci. A1 (1963) 3597.

    Google Scholar 

  12. Idem, ibid. 32 (1958) 99.

    Google Scholar 

  13. E. H. Andrews (ed.), “Developments in Polymer Fracture 1” (Applied Science, London, 1979).

    Google Scholar 

  14. N. Roy Choudhury and A. K. Bhowmick, J. Appl. Polym. Sci. 37 (1989) in press.

  15. D. S. Chiu, A. N. Gent and J. R. White, J. Mater. Sci. 19 (1984) 2622.

    Google Scholar 

  16. A. Saha Deuri and A. K. Bhowmick, ibid. 22 (1987) 4299.

    Google Scholar 

  17. T. L. Smith, Rubb. Chem. Technol. 51 (1978) 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy Choudhury, N., Bhowmick, A.K. Strength of thermoplastic elastomers from rubber-polyolefin blends. J Mater Sci 25, 161–167 (1990). https://doi.org/10.1007/BF00544202

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544202

Keywords

Navigation