Advertisement

Journal of Materials Science

, Volume 25, Issue 1, pp 15–21 | Cite as

Influence of pH on rheological properties of Al2O3 slips

  • A. K. Nikumbh
  • H. Schmidt
  • K. Martin
  • F. Porz
  • F. Thümmler
Article

Abstract

The slip-casting technique is commonly used for the production of complex-shaped ceramic components. Various commercial powders have been used, which were characterized with respect to morphology, particle-size distribution and specific surface area. Alumina slips with 80% solid content were prepared with distilled water and ethanol as dispersing agent, with and without deflocculant. HCl and C4H13NO (tetramethylammonium hydroxide) were used for controlling the pH. Investigations into rheology, i.e. the dependence of viscosity and shear stress on shear rate, were performed. The slip, green and sedimentation bulk density were measured.

Keywords

Polymer Viscosity Shear Stress Hydroxide Al2O3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. D. Parfitt and I. Peacock, “Surface and Colloidal Science” Vol. 10 (Plenum, New York, 1978) p. 163.Google Scholar
  2. 2.
    J. Lyklema, Adv. Colloid Interface Sci. 2 (1968) 65.Google Scholar
  3. 3.
    N. DeRooy, P. L. De Bruyn, and J. Th. G. Overbeek, J. Colloid Interface Sci. 75 (1980) 542.Google Scholar
  4. 4.
    L. A. Romo, Disc. Faraday Soc. 42 (1966) 232.Google Scholar
  5. 5.
    W. E. Hauth Jr, J. Amer. Ceram. Soc. 32 (1949) 394.Google Scholar
  6. 6.
    W. E. Hauth, J. Phys. Colloid Chem. 54 (1950) 142.Google Scholar
  7. 7.
    S. G. Whiteway, M. Coll-Palagos and C. R. Masson, Amer. Ceram. Soc. Bull. 40 (1961) 432.Google Scholar
  8. 8.
    C. R. Masson, S. G. Whiteway and C. A. Collings, ibid. 42 (1963) 745.Google Scholar
  9. 9.
    M. Riviera and A. D. Pelton, ibid. 57 (1978) 183.Google Scholar
  10. 10.
    R. M. William and A. Ezis, ibid. 62 (1983) 607.Google Scholar
  11. 11.
    Otto Ruff, Z. Anorg. Allgem Chem. 133 (1924) 187.Google Scholar
  12. 12.
    P. J. Anderson and P. Murray, J. Amer. Ceram. Soc. 42 (1959) 70.Google Scholar
  13. 13.
    P. D. S. St. Pierre, Trans. Brit. Ceram. Soc. 51 (1952) 260.Google Scholar
  14. 14.
    T. Sato and R. Ruch, “Stabilization of Colloidal Dispersion to Polymer Adsorption” (Marcel Dekker, New York, 1980).Google Scholar
  15. 15.
    J. Gregory, “Effects of Polymers on Colloidal Stability” NATO advanced study Institutes, Series E, Vol. E27 (FATO, University of Sussex, Palmer, UK, 1978) p. 103.Google Scholar
  16. 16.
    E. F. Adams “Refractory Materials” (Academic, New York, 1971) p. 145.Google Scholar
  17. 17.
    R. K. McGeary, J. Amer. Ceram. Soc. 44 (1961) 513.Google Scholar
  18. 18.
    R. J. Morgan, Trans. Soc. Rheol. 12 (1968) 511.Google Scholar
  19. 19.
    M. D. Sacks, Proceedings of the International Conference, “Ultrastructure Processing of Ceramic, Glasses and Composites” Gainesville, Florida, February 1985 (Wiley-Interscience, USA, 1986), edited by L. Hench, p. 418.Google Scholar

Copyright information

© Chapman and Hall Ltd 1990

Authors and Affiliations

  • A. K. Nikumbh
    • 1
  • H. Schmidt
    • 2
  • K. Martin
    • 2
  • F. Porz
    • 2
  • F. Thümmler
    • 2
  1. 1.Department of ChemistryUniversity of PoonaPuneIndia
  2. 2.Institut für Keramik im Maschinenbau und Institut für Werkstoffkunde II der Universitat KarlsruheWest Germany

Personalised recommendations