Advertisement

Journal of Materials Science

, Volume 18, Issue 11, pp 3461–3474 | Cite as

The microstructure and phase transformations in duplex 316L submerged arc weld metals

  • R. A. Farrar
  • R. G. Thomas
Papers

Abstract

The nature and kinetics of the δ-ferrite transformation in a series of duplex submerged arc 316 L weld metals has been studied under creep conditions at 600° C and an applied stress of 200 MN m−2. The δ-ferrite was found to transform first to M23C6 carbides, these occurring at either the δ/γ interface or within the δ-ferrite laths depending upon the presence of suitable nucleation sites. The remaining δ-ferrite then transforms to the intermetallic σ-phase. The kinetics of the intermetallic phase formation varied between the different welds, and STEM/EDAX analysis indicated that the kinetics were dependent on the localized segregations of chromium, nickel and molybdenum in the δ-ferrite laths. A transformation model has been developed which indicates that chromium diffusion within the γ matrix is the controlling mechanism.

Keywords

Nickel Carbide Chromium Molybdenum Applied Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Thomas and S. R. Keown, “Mechanical Behaviour and Nuclear Applications of Stainless Steel at Elevated Temperatures” Varese Conference, May 1981 (Metals Society, London, 1982) Book 280.Google Scholar
  2. 2.
    R. G. Thomas, R. D. Nicholson and R. A. Farrar, submitted to Met. Technol. Google Scholar
  3. 3.
    S. R. Keown and R. G. Thomas, Met. Sci. 15 (1981) 386.Google Scholar
  4. 4.
    B. Weiss and R. Stickler, Met. Trans. 3 (1972) 851.Google Scholar
  5. 5.
    V. G. Rivlin and G. V. Raynor, Int. Met. Rev. 248 (1980) 21.Google Scholar
  6. 6.
    J. C. Lippold and W. F. Savage, Weld. J. Res. Suppl. 58 (1979) 362s.Google Scholar
  7. 7.
    T. B. Massalski, A. J. Parkins and J. Jaklovsky, Met. Trans. 6A (1975) 1405.Google Scholar
  8. 8.
    C. E. Lyman, Weld. J. Res. Suppl. 58 (1979) 189s.Google Scholar
  9. 9.
    A. F. Smith, Met. Sci. 10 (1975) 375.Google Scholar
  10. 10.
    F. R. Beckett, J. Iron Steel Inst. 207 (1969) 632.Google Scholar
  11. 11.
    M. Lewis, Acta Metall. 14 (1966) 1421.Google Scholar
  12. 12.
    J. K. L. Lai and J. R. Haigh, Weld. J. Res. Suppl. 58 (1979) 1s.Google Scholar
  13. 13.
    J. Wegrzyn and A. Klimpel, ibid. Google Scholar
  14. 14.
    P. G. Shewmon, “Diffusion in Solid” (McGraw Hill, New York, 1963).Google Scholar
  15. 15.
    R. G. Thomas and D. Yapp, Weld. J. Res. Suppl. 57 (1978) 361s.Google Scholar
  16. 16.
    G. Cliff and G. W. Lorimer, J. Microsc. 103 (1975) 203.Google Scholar
  17. 17.
    J. I. Goldstein, J. L. Costley, G. W. Lorimer and S. J. B. Reed, “Scanning Electron Microscopy”, Vol. 1, edited by O. Johan (ITRI, Chicago, Illinois, 1977) p. 315.Google Scholar
  18. 18.
    C. Nockolds, M. J. Nasir, G. Cliff and G. W. Lorimer, “Institute of Physics Conference Series” No. 52 (1980) Chap. 9, p. 417.Google Scholar

Copyright information

© Chapman and Hall Ltd 1983

Authors and Affiliations

  • R. A. Farrar
    • 1
  • R. G. Thomas
    • 2
  1. 1.Department of Mechanical EngineeringUniversity of SouthamptonSouthamptonUK
  2. 2.Generation Development and Construction DivisionCEGBBarnwoodUK

Personalised recommendations